

GUIAS DE LABORATÓRIO: MECÂNICA INTRODUTÓRIA

Fernanda Marques Pantoja Marta Feijó Barroso Nathan Bessa Viana

Material instrucional associado à dissertação de mestrado de Fernanda Marques Pantoja, apresentada ao Programa de Pós-Graduação em Ensino de Física da Universidade Federal do Rio de Janeiro.

Rio de Janeiro

Dezembro de 2014

Este texto corresponde aos guias de laboratório propostos para a disciplina de Física Experimental I, disciplina que aborda no laboratório os tópicos de Mecânica Introdutória. O equipamento experimental é constituído de trilhos de ar e equipamentos de aquisição e análise de dados, no caso câmeras e programas de computador. Este material corresponde aos guias revistos após aplicação como projeto piloto em 2013.

Temas dos guias:

Guia de laboratório 1	Descrição do movimento – movimento uniforme	p. 3 a 5
Guia de laboratório 2	Movimento retilíneo uniformemente variado	p. 6 a 8
Guia de laboratório 3	Trabalho e energia	p. 9 a 12
Guia de laboratório 4	Sistema de partículas – momento linear	p. 13 a 16
Guia de laboratório 5	Rolamento e corpos rígidos	p. 17 a 19
Propagação de incertez	zas	p. 20

GUIA DE LABORATÓRIO 1

MÓDULO 1: DESCRIÇÃO DO MOVIMENTO - MOVIMENTO UNIFORME

1. OBJETIVO

Medir a velocidade de um carrinho sobre um trilho de ar. Observar e analisar o

movimento do carrinho sobre o trilho de ar. Compreender a noção de medida e

incerteza experimentais. Fazer uma análise do gráfico dos dados obtidos.

2. INTRODUÇÃO

Você deve (antes de vir para a aula) ler os textos disponíveis sobre o uso do

trilho de ar e sobre realização de medidas diretas.

Também sugerimos algumas leituras necessárias para uma melhor

compreensão dos assuntos discutidos: o(s) capítulo(s) do livro texto de Física 1

relativos ao conceito de velocidade e à descrição do movimento uniforme. Na

bibliografia recomendada, existem pequenos textos sobre padrões de medida e

instrumentos de medida.

3. PROCEDIMENTO EXPERIMENTAL

1. Certifique-se que o trilho de ar está nivelado, colocando o carrinho em várias

posições no trilho e observando se ele fica acelerado. Se necessário, proceda

ao nivelamento do trilho com o seu professor.

2. Verifique se o sistema de vídeo (câmera) está nivelado. Se necessário,

proceda ao nivelamento do sistema de vídeo com o seu professor.

3. Pense como impulsionar o carrinho (discuta com o seu professor). Simule a

obtenção de dados.

- 1. Registre o movimento do carrinho com o sistema de vídeo.
- 2. Copie o arquivo do vídeo gravado para o computador do laboratório.
- Observe os primeiros frames do vídeo. Mostre ao seu professor e discuta com ele se é necessário fazer uma nova tomada de dados.
- 4. Utilizando o programa ImageJ obtenha as medidas do tempo e posição do carrinho e construa uma tabela de medidas de posição como função do tempo como a mostrada a seguir. Consulte o tutorial sobre o uso do ImageJ.

n	Frame	t (s)	x (pixel)	δx (pixel)
1				
2				
3				

5. ANÁLISE DOS DADOS

- A partir do que você aprendeu sobre o conceito de velocidade, escreva as equações que descrevem a velocidade e a posição de um corpo em movimento retilíneo uniforme como funções do tempo.
- 2. Determine a posição do carrinho em cm. Para isso, com o auxílio do programa ImageJ, meça o comprimento do carrinho em "pixel". Utilize o cursor para medir a posição x em "pixel" das duas extremidades do carrinho e subtraia os valores encontrados. Meça o comprimento do carrinho com uma régua. A posição do carrinho em cm será dada por uma regra de três simples. Uma outra alternativa é medir em pixel o comprimento da régua do trilho de ar e fazer também uma regra de três simples,

$$\frac{X_p}{L_p} = \frac{X_{cm}}{L_{cm}}$$

onde L_{cm} é o comprimento da régua em pixels, L_{cm} é o comprimento da régua em centímetros, X_p é a posição do carrinho em pixels e X_{cm} a posição do carrinho em centímetros.

3. Construa uma tabela com as medidas em cm.

n	Frame	t (s)	x (cm)	Δx (cm)	δx (cm)	$\delta(\Delta x)$ (cm)
1						
2						
3						

- 4. Construa o gráfico da posição em função do tempo utilizando o papel milimetrado.
- 5. Utilizando o programa Ajuste 1.1¹, construa uma tabela de medidas da posição como função do tempo, introduzindo os valores de tempo, posição e o erro da posição. Obtenha o gráfico dos dados e o ajuste da reta.
- 6. Observe seus dados e verifique quais os intervalos de tempo e posição encontrados. Discuta suas observações com o professor.
- 7. A partir do ajuste linear obtido com o programa Ajuste 1.1, obtenha a velocidade V de deslocamento do carrinho e sua posição inicial.
- 8. Compare os seus resultados com as equações que você escreveu no primeiro item. Quais as suas conclusões?
- 9. Escreva seu relatório.

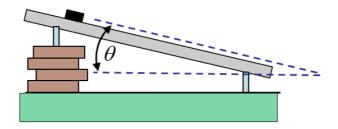
-

 $^{^1\} Programa\ disponível\ em\ http://www.if.ufrj.br/\sim carlos/applets/reta/reta.html.$

GUIA DE LABORATÓRIO 2

MÓDULO 2: MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO

1. OBJETIVO


Medir o valor da aceleração da gravidade. Observar e analisar o movimento do carrinho que desce um plano inclinado. Fazer uma análise do gráfico dos dados obtidos. Comparar o resultado experimental com o resultado esperado.

2. INTRODUÇÃO

Sugerimos algumas leituras necessárias para uma melhor compreensão dos assuntos discutidos: o(s) capítulo(s) do livro texto de Física 1 que discute(m) as leis da dinâmica e o movimento uniformemente acelerado.

3. PROCEDIMENTO EXPERIMENTAL

- 1. Verifique se o sistema de vídeo (câmera) está nivelado. Se necessário, proceda ao nivelamento do sistema de vídeo com o seu professor.
- 2. Incline o trilho de ar, levantando o ponto de apoio. A tomada de dados será feita para 5 inclinações diferentes.

4. TOMADA DE DADOS

1. Registre o movimento do carrinho descendo o plano inclinado com o sistema de vídeo. Você deve posicionar a câmera de modo que toda a régua do trilho seja

filmada. Proceda ao registro do movimento do carrinho para cinco inclinações diferentes. As inclinações devem variar de 2 cm a 10 cm.

- 2. Copie os arquivos dos vídeos gravados para o computador do laboratório.
- 3. Com o auxílio do programa ImageJ, determine o ângulo de inclinação do trilho e faça uma rotação das imagens. Para proceder a rotação da imagem leia o Tutorial 1.
- 4. Utilizando o programa ImageJ obtenha as medidas do tempo e posição do carrinho e construa uma tabela de medidas de posição como função do tempo, para as cinco inclinações, como a mostrada a seguir.

MEDIDA	t (s)	(t_n-t_1) (s)	r (pxl)	δr (pxl)	∆r (pxl)	$\delta(\Delta r)$ (pxl)
1		0			0	
2						
n						

5. ANÁLISE DOS DADOS

1. Determinar a posição do carrinho em cm. Para isso, com o auxílio do programa ImageJ, meça o comprimento da régua em "pixel". Utilize o cursor para medir a posição x em "pixel" das duas extremidades da régua e subtraia os valores encontrados. Outra opção é fazer uma linha de uma extremidade a outra e depois utilizar as ferramentas em analyze e measure para que o programa forneca o comprimento (lenght) da régua. Verifique o comprimento da régua do trilho de ar em centímetros. A posição do carrinho em cm será dada por uma regra de três simples,

$$\frac{L_{r\acute{e}gua}^{(pixel)}}{r^{(pixel)}} = \frac{L_{r\acute{e}gua}^{(cm)}}{r^{(cm)}}$$

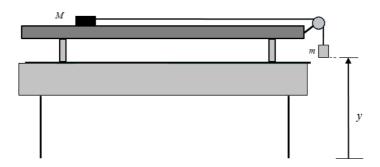
onde $L_{r\acute{e}gua}^{(pixel)}$ é o comprimento da régua em pixels, $L_{r\acute{e}gua}^{(cm)}$ é o comprimento da régua em centímetros, $r^{(pixel)}$ é a posição do objeto em pixels e $r^{(cm)}$ a posição do objeto em centímetros.

MEDIDA	t (s)	∆r (cm)	$\delta(\Delta r)$ (cm)	v (cm/s)	δv (cm/s)
1	0	0		-	-
2					
n				-	-

2. A partir dos dados experimentais complete a tabela acima, tomando como o valor da velocidade instantânea do carrinho a velocidade média entre os

- instantes $t + \Delta t$ e $t \Delta t$. Desse modo não é possível calcular a velocidade instantânea dos pontos inicial e final. Calcule também a incerteza no valor da velocidade.
- 3. Para cada inclinação faça o gráfico da velocidade instantânea do carrinho em função do tempo em papel milimetrado. Não se esqueça das incertezas!
- 4. Observe os pontos experimentais no gráfico da velocidade em função do tempo e verifique se esses pontos podem ser considerados como pontos de uma mesma reta. Esboce, usando uma régua transparente, a reta que melhor descreve seus dados.
- 5. A partir do gráfico determine a aceleração do carrinho e a respectiva incerteza.
- 6. Construa um modelo teórico para a sua experiência e analise as forças que atuam no carrinho. Obtenha a aceleração do carrinho. A partir desta aceleração, descreva o comportamento da velocidade e da posição como funções do tempo, usando para isto equações e gráficos.
- 7. Compare o seu resultado (o gráfico) com o modelo. Este modelo pode ser usado para descrever seus resultados? Justifique.
- 8. Construa uma tabela de medidas do sen θ e a aceleração do carrinho.

MEDIDA	θ (°)	senθ	a (cm/s²)	δa (cm/s²)


- 9. Construa o gráfico da aceleração do carrinho em função do senθ no papel milimetrado. Obtenha o coeficiente angular da reta que melhor se ajusta aos dados experimentais. Que grandeza física é representada pelo coeficiente angular? Não é necessário fazer a estimativa da incerteza deste valor.
- 10. Utilizando o programa Ajuste 1.1 construa uma tabela de medidas da aceleração como função do senθ, introduzindo os valores do senθ, aceleração e o erro da aceleração. Obtenha o gráfico dos dados e o ajuste da reta.
- 11. A partir do ajuste linear obtido com o programa Ajuste 1.1, obtenha o valor para a aceleração da gravidade g. Compare com o seu resultado. Quais as suas conclusões?
- 12. Escreva seu relatório.

GUIA DE LABORATÓRIO 3

MÓDULO 3: TRABALHO E ENERGIA

1. OBJETIVO

Medir a energia mecânica de um sistema e a sua variação. Observar e analisar o movimento de um sistema composto por um carro e um corpo preso ao carrinho por um fio, como mostrado na figura. A partir da medida da posição do carro sobre o trilho de ar obter as energias cinética do sistema e potencial gravitacional do corpo. Fazer uma análise do gráfico dos dados obtidos. Comparar o resultado experimental com o resultado esperado.

2. INTRODUÇÃO

Sugerimos algumas leituras necessárias para uma melhor compreensão dos assuntos discutidos: o(s) capítulo(s) do livro texto de Física 1 sobre a energia mecânica e sua lei de conservação.

3. PROCEDIMENTO EXPERIMENTAL

- Verifique se o trilho de ar está nivelado, colocando o carro em várias posições no trilho e observando se ele fica acelerado. Se necessário, proceda ao nivelamento do trilho com o seu professor.
- 2. Utilizando uma balança, meça a massa do carrinho e a do corpo que será amarrado a ele. A massa do corpo deve estar entre 10g e 30g.

- 3. Coloque a polia na extremidade do trilho e, usando um fio que passe pela polia, ligue o carrinho ao corpo mais leve.
- 4. Antes de fazer a captura dos dados com a com a câmera, simule a obtenção dos dados. Para isso, observe qual é a região na qual o carro estará acelerado e a região na qual sua velocidade será constante. Lembre-se que quando o corpo mais leve tocar o chão o movimento do carro será alterado, e escolha um fio com comprimento adequado para obter dados nas duas regiões. O corpo deve atingir o chão antes que o carro chegue à extremidade do trilho de ar.
- 5. Verifique se o sistema de vídeo (câmera) está nivelado. Se necessário, proceda ao nivelamento do sistema de vídeo com o seu professor.

- Filme o carrinho na posição em que o corpo mais leve toca o chão, antes de soltar o corpo da altura h. Depois, solte o corpo da altura h, submetendo desta forma o carrinho a uma aceleração.
- 2. Copie o arquivo do vídeo gravado para o computador do laboratório. Abra o arquivo utilizando o programa ImageJ e verifique junto com o seu professor se é necessário fazer uma nova tomada de dados. Lembre-se que o sistema de vídeo deveria estar alinhado com o trilho. Para verificar a horizontalidade do trilho utilize a função retângulo no programa ImageJ.
- Utilizando o programa ImageJ obtenha as medidas do tempo e posição do carrinho e construa uma tabela de medidas de posição como função do tempo. Estime a incerteza δr dessas medidas.

MEDIDA	t (s)	(t_n-t_1) (s)	r (pxl)	δr (pxl)
1		0		
2				
n				

5. ANÁLISE DOS DADOS

- Observe o sistema que você utilizou para realizar a experiência. Com base no princípio da conservação da energia mecânica, construa um modelo simples que permita analisar a experiência realizada.
- Determine a posição do carrinho em centímetros. Para isso, com o auxílio do programa ImageJ, meça o comprimento da régua em "pixel". Utilize o cursor para medir a posição x em "pixel" das duas extremidades da régua e subtraia

os valores encontrados. Outra opção é fazer uma linha de uma extremidade a outra e utilizar as ferramentas *analyze* e *measure* do programa para obter o comprimento (*lenght*) da régua. Verifique o comprimento da régua do trilho de ar em centímetros. A posição do carrinho em cm será dada por uma regra de três simples

$$\frac{L_{r\acute{e}gua}^{(pixel)}}{r^{(pixel)}} = \frac{L_{r\acute{e}gua}^{(cm)}}{r^{(cm)}}$$

onde $L_{rcute{e}gua}^{(pixel)}$ é o comprimento da régua em pixels, $L_{rcute{e}gua}^{(cm)}$ é o comprimento da régua em centímetros, $r^{(pixel)}$ é a posição do objeto em pixels e $r^{(cm)}$ a posição do objeto em centímetros.

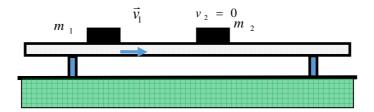
MEDIDA	t (s)	∆r (cm)	$\delta(\Delta r)$ (cm)	v (cm/s)	δv (cm/s)
1	0	0		-	-
2					
n				-	-

- 3. A partir dos dados experimentais complete a tabela acima, tomando como o valor da velocidade instantânea do carrinho a velocidade média entre os instantes t + Δt e t Δt. (Desse modo não é possível calcular a velocidade instantânea dos pontos inicial e final). Calcule também a incerteza no valor da velocidade.
- 4. Faça um gráfico da velocidade como função do tempo em papel milimetrado. A partir do gráfico estude a região onde o movimento do carrinho foi acelerado e onde o movimento foi uniforme.
- 5. A partir dos dados obtidos até agora, construa uma tabela da energia mecânica total do sistema. A tabela deve conter as seguintes colunas:

MEDIDA	t (s)	K (erg)	δK(erg)	U (erg)	δU(erg)	E(erg)	δE(erg)
1	0						
2							
n							

Antes de fazer os cálculos para construir a tabela observe se são possíveis simplificações e/ou aproximações (principalmente no caso das incertezas). Discuta com o seu professor.

- 6. Construa um gráfico que indique a energia cinética, a energia potencial gravitacional e a energia total do sistema como funções do tempo.
- 7. Discuta, a partir do gráfico obtido, se há conservação da energia mecânica. Quais as suas conclusões?
- 8. Escreva seu relatório.


INSTITUTO DE FÍSICA – UFRJ – 2013/2

GUIA DE LABORATÓRIO 4

MÓDULO 4: SISTEMA DE PARTÍCULAS - MOMENTO LINEAR

1. OBJETIVO

Analisar a conservação do momento linear em diversos processos de colisão, e a variação da energia cinética nesses processos. Fazer uma análise do gráfico dos dados obtidos. Comparar o resultado experimental com o resultado esperado.

2. INTRODUÇÃO

Sugerimos algumas leituras necessárias para uma melhor compreensão dos assuntos discutidos: o(s) capítulo(s) do livro texto de Física 1 sobre momento linear e sua conservação.

3. PROCEDIMENTO EXPERIMENTAL

- 1. Verifique se o trilho de ar está nivelado, colocando o carrinho em várias posições no trilho e observando se ele fica acelerado. Se necessário, proceda ao nivelamento do trilho com o seu professor.
- 2. Verifique se o sistema de vídeo (câmera) está nivelado. Se necessário, proceda ao nivelamento do sistema de vídeo com o seu professor.
- 3. Utilizando uma balança, meça a massa dos carrinhos que serão utilizados.
- 4. Antes de fazer o filme simule a obtenção dos dados.

1. ATIVIDADE I - COLISÃO ELÁSTICA

- Prepare dois carrinhos com massas semelhantes.
- Imagine um procedimento para lançar um carrinho de encontro ao outro (em repouso), em uma colisão elástica.
- Faça um filme dos carrinhos antes, durante e após a colisão.
- Repita a experiência, sem tomar dados, usando carros de massas diferentes. Observe com atenção o que ocorre de diferente em relação à situação anterior, na qual as massas são iguais.

2. ATIVIDADE II – COLISÃO INELÁSTICA

- Prepare dois carrinhos com massas diferentes. Um carro deve ter aproximadamente 100g a mais que o outro.
- Imagine um procedimento para lançar um carrinho de encontro ao outro (em repouso), em uma colisão totalmente inelástica.
- Faça um filme dos carrinhos antes, durante e após a colisão.
- 3. Copie os arquivos dos vídeos gravados para o computador do laboratório. Abra o arquivo utilizando o programa ImageJ e verifique junto com o seu professor se é necessário fazer uma nova tomada de dados. Lembre-se que o sistema de vídeo deveria estar alinhado com o trilho. Para verificar a horizontalidade do trilho utilize a função retângulo no programa ImageJ.
- 4. Utilizando o programa ImageJ, obtenha as medidas do tempo e posição do carrinho e construa uma tabela de medidas de posição como função do tempo. Estime a incerteza δr dessas medidas.

MEDIDA	t (s)	r (pxl)	δr (pxl)	r (cm)	δr (cm)
1					
2					
n					

5. ANÁLISE DOS DADOS

- 1. Observe o sistema que você utilizou para realizar a experiência. Construa um modelo teórico simples que permita analisar a experiência realizada.
- 2. Determine a posição do carrinho em centímetros. Para isso, com o auxílio do programa ImageJ, meça o comprimento da régua em "pixel". Utilize o cursor para medir a posição x em "pixel" das duas extremidades da régua e subtraia os valores encontrados. Outra opção é fazeruma linha de uma extremidade a outra e utilizar as ferramentas analyze e measure para obter o comprimento (lenght) da régua. Verifique o comprimento da régua do trilho de ar em centímetros. A posição do carrinho em cm será dada por uma regra de três simples,

$$\frac{L_{r\acute{e}gua}^{(pixel)}}{r^{(pixel)}} = \frac{L_{r\acute{e}gua}^{(cm)}}{r^{(cm)}}$$

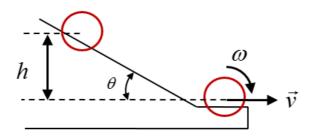
onde $L_{r\acute{e}gua}^{(pixel)}$ é o comprimento da régua em pixels, $L_{r\acute{e}gua}^{(cm)}$ é o comprimento da régua em centímetros, $r^{(pixel)}$ é a posição do objeto em pixels e $r^{(cm)}$ a posição do objeto em centímetros.

- Calcule as grandezas relevantes para a análise das experiências realizadas.
 Calcule também a incerteza no valor dessas grandezas.
- 4. Analise a conservação do momento linear e energia cinética nos vários tipos de colisões entre os dois corpos. Faça uma previsão dos valores que você espera para as velocidades finais dos carrinhos em cada uma das experiências.

ATIVIDADE I – COLISÃO ELÁSTICA

- Calcule as posições do centro de massa do sistema para os valores de tempo medidos e acrescente uma coluna à sua tabela indicando esses resultados, bem como a incerteza da posição do centro de massa.
- Faça um gráfico r x t para o movimento dos dois carrinhos e do centro de massa do sistema e, a partir do gráfico, obtenha as respectivas velocidades dos carrinhos antes e depois a colisão, bem como a velocidade do centro de massa do sistema.
- Calcule o momento linear e a energia cinética do sistema antes e depois da colisão e verifique se essas grandezas se conservam.
- Calcule o coeficiente de restituição ε da colisão.

ATIVIDADE II - COLISÃO INELÁSTICA

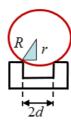

- Calcule as posições do centro de massa do sistema para os valores de tempo medidos e acrescente uma coluna à sua tabela indicando esses resultados, bem como a incerteza da posição do centro de massa.
- Faça um gráfico r x t para o movimento dos dois carrinhos e do centro de massa do sistema e, a partir do gráfico, obtenha as respectivas velocidades dos carrinhos antes e depois a colisão, bem como a velocidade do centro de massa do sistema.
- Calcule o momento linear e a energia cinética do sistema antes e depois da colisão e verifique se essas grandezas se conservam.
- Calcule o coeficiente de restituição ε da colisão.
- 5. Escreva seu relatório, salientando os seguintes pontos:
 - As características do movimento do centro de massa de um sistema de dois corpos que colidem;
 - As grandezas conservadas.

GUIA DE LABORATÓRIO 5

MÓDULO 5: ROLAMENTO E CORPOS RÍGIDOS

1. OBJETIVO

Estudar o movimento de um corpo rígido, analisando-o como uma composição de um movimento de translação e outro de rotação.


2. INTRODUÇÃO

Sugerimos algumas leituras necessárias para uma melhor compreensão dos assuntos discutidos: o capítulo do livro texto de Física 1 sobre o movimento de corpos rígidos.

3. PROCEDIMENTO EXPERIMENTAL

- Utilizaremos uma canaleta com dois trechos, um inclinado e outro horizontal, e uma esfera de aço.
- Verifique se o sistema de vídeo (câmera) está nivelado. Se necessário, proceda o nivelamento do sistema de vídeo com o seu professor. Você deve posicionar a câmera de modo que toda a canaleta seja filmada.
- 3. Antes de fazer o filme simule a obtenção dos dados.

 Observe a canaleta disponível no laboratório. Meça as características físicas da canaleta que são relevantes para a experiência. Para fazer isso construa um modelo teórico.

- 2. Utilizando o paquímetro, meça o diâmetro das esferas que serão utilizadas.
- 3. Observe se o movimento da esfera é um rolamento puro, abandonando-a várias vezes da mesma altura h.
- 4. Repita a experiência, usando esferas de diâmetros diferentes. Observe com atenção o que ocorre de diferente em relação à situação anterior.
- Filme o rolamento da esfera na canaleta. Faça o filme com 30fps (quadros por segundo).
- Copie o arquivo do vídeo gravado para o computador do laboratório. Abra o arquivo utilizando o programa ImageJ e verifique junto com o seu professor se é necessário fazer uma nova tomada de dados.
- 7. Com o auxílio do programa ImageJ determine o ângulo de inclinação da canaleta e faça uma rotação das imagens. Para proceder a rotação da imagem leia o Tutorial 1.
- 8. Utilizando o programa ImageJ obtenha as medidas do tempo e posição da esfera e construa uma tabela de medidas de posição como função do tempo. Estime a incerteza δr dessas medidas.

MEDIDA	t (s)	r (pxl)	δr (pxl)	r (cm)	δ r (cm)
1					
2					
n					

5. ANÁLISE DOS DADOS

- 1. Observe o sistema que você utilizou para realizar a experiência. Construa um modelo teórico que permita analisar a experiência realizada.
- 2. Determine a posição da esfera em centímetros.
- 3. Calcule as grandezas relevantes para a análise da experiência realizada. Calcule também a incerteza no valor dessas grandezas.
- 4. Acrescente a sua tabela uma coluna com o valor da velocidade instantânea da esfera, bem como sua incerteza experimental.

t (s)	r (cm)	δr (cm)	v (cm/s)	δv (cm/s)
0	0		-	-
			-	-

- 5. Faça o gráfico da velocidade instantânea da esfera em função do tempo em papel milimetrado. Não se esqueça das incertezas!
- 6. Observe os pontos experimentais no gráfico da velocidade em função do tempo e verifique se esses pontos podem ser considerados como pontos de uma mesma reta. Esboce, usando uma régua transparente, a reta que melhor descreve seus dados.
- 7. A partir do gráfico determine a aceleração da esfera e a respectiva incerteza da aceleração. Compare esse valor com o calculado no modelo teórico.
- Utilizando o programa Ajuste1.1 calcule a aceleração da esfera e compare com o esperado.
- 9. Escreva seu relatório.

PROPAGAÇÃO DE INCERTEZAS

• Se
$$z = x + y$$
 ou $z = x - y$:

$$\delta z^2 = \delta x^2 + \delta y^2$$

• Se
$$z = x$$
. y ou $z = x/y$:

$$\left(\frac{\delta z}{z}\right)^2 = \left(\frac{\delta x}{x}\right)^2 + \left(\frac{\delta y}{y}\right)^2$$

• Se w = K.x, sendo K constante:

$$\delta w = K. \delta z$$

•
$$\Delta P = P - P_1$$
 então $\delta(\Delta P)^2 = \delta P^2 + \delta P_1^2$, logo $\delta(\Delta P) = \sqrt{\delta P^2 + \delta P_1^2}$

•
$$\Delta r = r - r_1$$
 então $\delta(\Delta r)^2 = \delta r^2 + \delta r_1^2$, logo $\delta(\Delta r) = \sqrt{\delta r^2 + \delta r_1^2}$

• $v = \Delta r / \Delta t$ então

$$\left(\frac{\delta v}{v}\right)^2 = \left(\frac{\delta(\Delta r)}{\Delta r}\right)^2 + \left(\frac{\delta(\Delta t)}{\Delta t}\right)^2$$

Desprezando a incerteza relativa de Δt , temos

$$\left(\frac{\delta v}{v}\right)^{2} = \left(\frac{\delta(\Delta r)}{\Delta r}\right)^{2}$$
$$\left|\frac{\delta v}{v}\right| = \left|\frac{\delta(\Delta r)}{\Delta r}\right|$$
$$\delta v = \frac{\delta(\Delta r)}{\Delta r}.v$$

• $a = \Delta v / \Delta t$ então

$$\left(\frac{\delta a}{a}\right)^2 = \left(\frac{\delta(\Delta v)}{\Delta v}\right)^2 + \left(\frac{\delta(\Delta t)}{\Delta t}\right)^2$$

Desprezando a incerteza relativa de \(\Delta t\), temos

$$\left(\frac{\delta a}{a}\right)^{2} = \left(\frac{\delta(\Delta v)}{\Delta v}\right)^{2}$$
$$\left|\frac{\delta a}{a}\right| = \left|\frac{\delta(\Delta v)}{\Delta v}\right|$$
$$\delta a = \frac{\delta(\Delta v)}{\Delta v}. a$$