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Abstract
When studying (or teaching) classical electromagnetism, one is bound to deal
with the electric field of an ideal electric dipole, as well as its magnetic
counterpart. A careful analysis then reveals that each of those fields must
include, for consistency, a term proportional to a Dirac delta function localized
at the position of the dipole. However, one is usually told not to worry about
those terms since, as classical interactions always involve sources which are
spatially separated, the Dirac-delta terms are only relevant for quantum
mechanics, where they are directly related to important phenomena. In this
work, we pose and solve a purely classical problem in electrostatics in which
the Dirac-delta terms in the dipole fields are indispensable. It involves the
computation of the interaction energy between a conductor with a spherical
cavity and an (ideal) electric dipole located at the center of that cavity. We also
solve its magnetic counterpart, replacing the conductor with a superconductor
and the electric dipole with a magnetic one.
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1. Introduction

The importance of studying electric and magnetic dipoles in classical electromagnetism
cannot be overstated. Indeed, (ideal) electric dipoles constitute an excellent model for polar
molecules, and any polarizable material can be described (macroscopically) as a continuum of
dipoles [1–3]. Moreover, the interaction between electric dipoles is at the heart of dispersive
forces such as van der Waals’s [4]. As for the magnetic dipole, it can in many cases be a good
approximation to a real magnet (or electromagnet), and is somewhat fundamental since there
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is no magnetic monopole in Maxwell’s theory. One can also describe any magnetic material
as a continuum of ideal magnetic dipoles.

In order to compute the electric field

Edip of a static electric dipole


p located at position


rp,

one usually starts from its electric potential
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which can be obtained in several different ways, and then one proceeds to calculating the
corresponding electric field through

 
= -E Vdip dip. Now, as a function, it is clear that ( )V rdip

is not defined at
 
=r rp. When this fact is carefully taken into account, one finds
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The last term in the above expression is the part that does not arise naturally from just
taking the gradient of ( )V rdip . Being proportional to a Dirac delta function, it is nonzero only
at the position of the dipole. Hence, in most classical applications, it does not need to be
considered.

Similarly, one can compute the magnetic field

Bdip of a static magnetic dipole


m located at

position

rm. The resulting expression is
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In this paper, we will not be concerned with the derivation of equations (1.2) and (1.3)—
rather, our goal here is to discuss to what extent the delta-function terms in the above
expressions can be neglected in classical interactions. Nonetheless, we remind the reader of
the simple argument given in a famous paper by Griffiths for the existence of those delta-
function terms [5]. If we think of an ideal electric dipole


p as the limit of a uniformly

polarized sphere of radius R, then the electric field outside the sphere is exactly equal to that
of an ideal dipole, whereas the field inside the sphere is uniform, given by ( ) pe- p R1 4 0

3.
Clearly, the field inside the sphere blows up in the R→ 0 limit, but the integral of that field
over the volume of the sphere gives ( ) ( ) 

pe p e- ´ = - -p R R p1 4 4 3 30
3 3

0
1 , no matter

how small R is. This suggests that the electric field ‘inside’ an ideal dipole can be written
precisely as the delta-function term in equation (1.2).

The delta-function term in equation (1.3) can be explained in a similar way, if we think of
an ideal magnetic dipole as the limit of a uniformly magnetized sphere. In particular, the
relative sign of the magnetic delta-function term with respect to the electric one can be
thought of as stemming from the fact that the magnetic field at the center of a small loop of
current points in the same direction as its magnetic dipole moment, whereas the electric field
at the midpoint of a (real) dipole has the opposite direction of its electric dipole moment. The
reader can find more details in any of the books cited in the beginning of this introduction—
see also a very nice review and pedagogical explanation given in [6].

The paper is organized as follows. In section 2, we briefly review the calculation of the
interaction energy of two systems in classical electromagnetism in terms of their electric or
magnetic fields, and we give a general argument as to why the delta-function terms should
matter for that type of calculation. In section 3, we set up a specific electrostatics problem in
which the need for the electric-dipole delta-function term is easy to check. In section 4, we
pose and solve an analogous problem for the magnetic case. We conclude with some remarks
in section 5.
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2. Brief review of the energy stored in the fields

In section IV of [5], it is stated that ‘In most applications (...) the delta-function term can be
ignored.’ Then, the author explains its relevance for quantum mechanics, which might sug-
gest that those terms can be ignored in classical electromagnetism. More recently, in [6], the
authors affirm that ‘As the Dirac delta function vanishes outside the origin [i.e. the position of
the dipole] and the classical interaction is always between sources spatially separated, in pure
classical electromagnetism these extra terms play no important role.’ At first, those con-
siderations seem very sensible. However, let us see what we can learn by revisiting the
electromagnetic energy stored in the fields.

It can be shown that the energy density  contained in the electric and magnetic fields is
given by
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In fact, in the introduction of his book [7], Wald argues that from a relativistic point of view
the above equation ‘should be viewed as having fundamental status in the theory of
electromagnetism, comparable to that of Maxwell’s equations.’ Thus, choosing zero energy to
mean the situation in which the electric and magnetic fields vanish everywhere, the energy U
of any electromagnetic system can be written as
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where  stands for the whole space.
Now, consider two subsystems, 1 and 2, interacting electrostatically. The electric field


E

can be decomposed into contributions coming from each subsystem, i.e.
  
= +E E E1 2. In this

case, the energy of the system can be written as

( )= + +U U U U , 2.31 2 12
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corresponds to the self-energy of subsystem j ( j ä {1, 2}) and
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3



is the interaction energy of the two subsystems. Note that, if one of the fields contains a delta-
function term, then that term will in general contribute to the dot product in U12. Evidently, an
analogous expression would hold in the case of two subsystems interacting magnetostatically.

In the following section, we will discuss a specific electrostatics problem in which the
delta-function contribution is easy to calculate.

3. Electric dipole in conductor cavity

We have argued that the delta-function term in the electric field of a point dipole will in
general yield a finite contribution to the electrostatic energy of a system containing the dipole.
It would be nice to see explicitly in an example how that contribution appears and has
precisely the value which is necessary for consistency. For most configurations the integral in
equation (2.4) is not easy to compute. However, there is a typical electrostatics problem in
which the computation is straightforward.
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Consider a globally neutral spherical conductor containing a spherical cavity of radius R,
as illustrated in figure 1. In that cavity, there is nothing but an ideal electric dipole ˆ

=p p0 z,
located at the center of the cavity, which we take as the origin of our coordinate system. Since
the system is in electrostatic equilibrium, there is an induced charge distribution on the
surface of the cavity which ensures that the (total) electric field in the bulk of the conductor is
zero. (In fact, since the conductor is neutral, there is no charge on its outer surface, which
implies the electric field is vanishing for r> R.) Hence, there are two contributions to the
electric field, as in the generic case discussed in the previous section. Namely the dipole field
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which is just equation (1.2) with
 

=r 0p (since the dipole is at the origin), and the field
produced by the charge distribution on the surface of the cavity
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where ( )
s ¢r denotes the surface charge density.

Now, it is well known [1] that a sphere of radius R with surface charge density of the form

( ) ˆ · ˆ ( )s ¢ = ¢r C , 3.3z r

Figure 1. An ideal dipole

p at the center of a spherical cavity of radius R within a

(hollow) spherical conductor. In this situation, there is an induced surface charge with
density σ on the inner surface of the conductor, i.e. the surface of the cavity.
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where C is a real constant, gives rise to the following electric field:
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We remind the reader that the solution to this electrostatics problem is unique.
We are now ready to calculate the interaction energy of this dipole-conductor system. First,

regarding

E2 as an external field with respect to the dipole, we can apply the usual potential

energy formula · ( ) 
= -U p E

ext
to obtain1
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Now we are going to show that the same result can be obtained from the more fundamental
expression in equation (2.4), provided that we include the contribution arising from the delta-
function term in


E1. We can split U12 in two terms, as follows:
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This function can be straightforwardly integrated using spherical coordinates (ˆ · ˆ q= cosz r ).
Then we find
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For the integrand in the second term on the right-hand side of equation (3.7), we have

1 Note that the · ( ) 
= -U p E

ext
formula does not directly involve the dipole field, hence the delta-function term

plays no role here. Although it can also be derived from equation (2.4), it has a straightforward interpretation in terms
of mechanical work.
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Note that in this case, as opposed to the computation of >
E , we must include the contribution

from the delta-function term in

E1, since here the region of integration includes the origin

(where the dipole is located). After integration, the contribution from the first term in <
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the contribution from the delta-function term, which is trivial to compute and yields
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Therefore, as expected, the sum of (3.9) and (3.11) exactly reproduces equation (3.6). It
should be clear that the contribution stemming from the delta-function term in the electric
field of the dipole was crucial for the matching of the two results.

4. Magnetic dipole in superconductor cavity

In this section, we solve a problem in magnetostatics which is completely analogous to the
electrostatics problem discussed in the previous section. Here the delta-function term in the
magnetic field of an ideal magnetic dipole will also play a crucial role in the computation of
the interaction energy.

Consider again a system like the one in figure 1, but now with the spherical conductor
replaced by a type-I superconductor of the same shape, including the spherical cavity of
radius R. Moreover, the electric dipole at the center of the cavity is now replaced by an ideal
magnetic dipole ˆ

=m m0 z. Because of the Meissner effect, the (total) magnetic field in the
bulk of the superconductor is zero. This is achieved thanks to an induced current distribution
on the surface of the cavity. Hence, there are two contributions to the magnetic field. Namely
the dipole field
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which is just equation (1.3) with
 

=r 0m (since the dipole is at the origin), and the field
produced by the current distribution on the surface of the cavity

∮( ) ( ) ( )
∣ ∣

( ) ( )
   

  
 

 m
p

º =
¢ ¢

- ¢
´ - ¢B r B r

K r r

r r
r r

4

d
, 4.2K

S
2

0
2

32

where ( )
 

¢K r denotes the surface current density.
Now, it is well known [1] that a sphere of radius R with surface current density of the form
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where D is a real constant, gives rise to the following magnetic field:
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where ˆ
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From this point, the math is almost identical to that of the analogous electrostatics pro-
blem. The interaction energy of the dipole-superconductor system is given by
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It is straightforward to check that the same result can be obtained from the formula
· ( ) 

=U m B
ext

.2 Once again, the contribution stemming from the delta-function term in the
magnetic field of the dipole was crucial for the matching of the two results.

5. Final remarks

Evidently, point dipoles (electric or magnetic) constitute an idealization, a fact which is partly
reflected in the delta-function terms appearing in the expressions for their fields. Nevertheless,
there are several electromagnetic phenomena whose description is immensely simplified if
one considers matter as being composed of (possibly time-varying) dipoles. Therefore it pays
off to deal with those singular delta-function terms in the fields.

It is well know that the delta-function terms play an important role in quantum mechanics,
where they are responsible for interactions between particles located at the same position
(sometimes referred to as contact terms). Classically, on the other hand, we know that
interactions involve sources at spatially separated space-points, which might suggest that one
can always ignore the delta-function terms in classical settings.

However, if one is interested in calculating the interaction energy of a classical electro-
magnetic system in the most fundamental way (from a relativistic point of view [7]), then one
needs to integrate the electric and magnetic fields over space, and those delta-functions will in
general give a finite contribution to the energy.

In this work, we have explicitly computed that contribution to the energy stemming from
the delta-function terms in two simplified, purely classical settings. Namely an electric dipole
in the center of a spherical cavity inside a conductor (an electrostatics problem) and its
magnetostatic analogue, i.e. a magnetic dipole in the center of a spherical cavity inside a

2 Note the absence of a minus sign here, as opposed to the electrostatic analogue · ( ) 
= -U p E

ext
. A thorough

discussion of that point is somewhat subtle and out of the scope of this paper. However, note that · ( ) 
=U m B

ext
can

be derived in a general context from ( ) ·
  

òm B B r1 d0 1 2
3 . That formula computes all the energy involved in creating

the dipole, keeping it permanent and placing it in the external magnetic field, whereas · ( ) 
-m B

ext
only accounts for

the latter. For more details we suggest consulting section 5.16 of [2], section 4.3 of [7] or section 12.7 of [3].
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superconductor. In both cases, it can be clearly seen that one needs to keep the delta-function
terms in order to get the correct result for the interaction energy, which can also be computed
by other means.

We have focused on dipoles not only because they are simpler to deal with mathemati-
cally, but also because they are relevant for many applications. Nonetheless, the higher
multipoles also contain terms involving delta functions (see, for example, the discussion in
[8]), and those terms should contribute to the energy as well. We leave that investigation for
future work.
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