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Kepler’s equation, rarely discussed in undergraduate textbooks, was enunciated by Johannes

Kepler in his Astonomia Nova, published in 1609, much before the advent of the integral and

differential calculus. The search for its solutions challenged the minds of brilliant researchers like

Newton, Lagrange, Cauchy, and Bessel, among others. In this work, we start with a standard

derivation of Kepler’s equation and emphasize how it gave rise to new mathematics, like

approximation methods, Bessel functions, and complex analysis. Then we apply it in two non-

trivial examples. In the first one, we compute the distance reached by a projectile launched from a

point at the equator of the rotating Earth. This result could be used to prove the rotation of the

Earth without the need of a Foucault pendulum. In the second example, we show how two

astronauts moving around the Earth along the same circular orbit could exchange a sandwich.

These two apparently innocent problems are quite involved because their solutions demand the

calculations of the time of flight. VC 2018 American Association of Physics Teachers.

https://doi.org/10.1119/1.5055760

I. INTRODUCTION

Every motion of a particle under the action of solely a cen-
tral force takes place in a fixed plane. This is a direct conse-
quence of the central character of the force which produces
no torque relative to the center of force, so that the angular
momentum of the particle with respect to this point is a con-
stant of motion. This fact, together with the spherical sym-
metry, strongly suggests that we use polar coordinates to
handle any central force problems.

The constancy of the norm of the angular momentum
L ¼ jLj allows one to write L ¼ mr2 _u, with m being the par-
ticle’s mass. Hence, appropriately using this simple relation
we can eliminate the time dependence of any central force
problem and, particularly, Kepler’s problem. This is pre-
cisely what the great majority of undergraduate textbooks in
classical mechanics do when discussing motions under a
central force F ¼ FðrÞr̂.1–3 It can be proved that u :¼ 1=r
satisfies the orbit equation given by

u00 uð Þ þ u uð Þ ¼ �
m

L2u2
F 1=uð Þ: (1)

The solutions to Eq. (1) give us all the possible trajectories
of the particle. Particularly, in Kepler’s problem, the orbit
equation tells us that for L 6¼ 0 the trajectories are ellipses
(circles as particular cases), parabolas and hyperbolas, so all
limited orbits are closed.

Although it is very important to know what the allowed
trajectories in Kepler’s problem are, this is not sufficient to
answer many questions as, for instance, what is the range of
a projectile launched from the surface of the rotating Earth.
In fact, any problem which involves the calculation of the
time of flight cannot be solved by the orbit equation alone.

As we shall see, it is Kepler’s equation that provides the
temporal solution of Kepler’s problem. This transcendental
equation is largely used in astronomy. The magic of Kepler’s
equation—being so simple in form, yet so complicated—its

rich history and its broad possibility of application motivated
us to popularize it for undergraduate students as well as to
exemplify how to use it in some interesting problems. We
hope this work will be useful for both professors and stu-
dents. The former may use it as complementary material for
undergraduate or even graduate courses on classical mechan-
ics, whereas the latter may be inspired to elaborate and solve
many other interesting problems. The richness of Kepler’s
equation itself makes its study worthwhile.

This article is organized as follows. In Sec. II, we intro-
duce Kepler’s equation, for which we present a geometrical
deduction. Section III is a historical survey of Kepler’s equa-
tion emphasizing how it gave rise to new mathematics. In
Secs. IV and V, we apply the equation to solve two interest-
ing and quite non-trivial problems, both involving the calcu-
lation of the time of flight of a particle under the influence of
the Earth’s gravitational field. Section VI is left for conclu-
sions and final remarks.

II. KEPLER’S EQUATION

Kepler’s problem consists in finding the possible motions
for a particle subject to an inverse-square-law net force
FðrÞ ¼ �ðk=r2Þ r̂, where k> 0. From the orbit equation, for
non-zero angular momentum with respect to the center of
force, the possible Keplerian orbits are conic sections. In par-
ticular, all the limited orbits are ellipses, which can be writ-
ten as1–3

r uð Þ ¼
a 1� e2ð Þ

1þ e cos u
; (2)

where e is the eccentricity of the orbit (0 < e < 1) and a is
its semi-major axis. The angle u is called the true anomaly,
defined as u¼ 0 at the pericenter. We may also write the
(constant) magnitude of the angular momentum of the parti-
cle L from its relation to the areal velocity
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dA

dt
¼ L

2m
: (3)

Then, for elliptic orbits (0< e< 1), with semi-axes a and
b ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

, and denoting one complete period of motion
by s, we may write

L ¼ 2p
s

ma2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

: (4)

So far, only the relation between u and r (i.e., the trajec-
tory) has been given. In other words, we have not solved
Kepler’s problem completely, as we do not have an expres-
sion for the coordinates u and r as functions of time. This is
not by chance. Indeed, obtaining the complete solution to
Kepler’s problem is a more complicated endeavor. In
Subsections II A and II B, we aim to fill this gap by introduc-
ing the so-called temporal Kepler’s equation, widely used by
astronomers in the case of elliptical orbits.

A. The need for a new angular variable: Eccentric
anomaly

A natural procedure for obtaining the temporal solution of
Kepler’s problem would be to depart from the angular
momentum with respect to the center of force L ¼ mr2 _u. By
integrating this equation and using Eqs. (2) and (4), we
obtain

xt ¼ ð1� e2Þ3=2

ðu

0

du0ð1þ e cos u0Þ�2; (5)

¼ ð1� e2Þ3=2
X1
n¼0

ð�1Þnðnþ 1Þen

ðu

0

du0ðcos u0Þn;

(6)

where we defined x ¼ 2p=s and chose u¼ 0 at t¼ 0. Recall
that the previous equation is valid for elliptic orbits, for
which 0< e< 1, so that the power series converges
uniformly.

Although the integral in Eq. (5) is solvable by means of
expanding its right-hand side in powers of e as written in Eq.
(6), there is a more convenient method of expressing the
solution to this problem, which Kepler presented in
Astronomia Nova in 1609. It consists in using an angular var-
iable other than u for the position along the orbit, which
holds a more concise relation to time: the eccentric anomaly
w, which, as we shall see, is measured from the geometric
center of the orbit, instead of from the center of force.

From this point, we could algebraically define w, provid-
ing an equation that relates it to u, then integrate Eq. (5).
This method is presented in advanced textbooks such as
Landau and Lifshitz,4 Goldstein,5 and Poisson and Will.6

However, we will follow a more geometrical approach which
is closer to the one followed by Kepler himself.7–9 Other
interesting derivations of Kepler’s equation can be found in
a paper by Yoshida10 and in Szebehely’s book on celestial
mechanics.11

B. Geometrical derivation of Kepler’s equation

Figure 1 shows the elliptic trajectory of a planet around
the sun. Let us consider the center of force fixed at point S,
which is one of the foci of the ellipse, and the position of the

planet at an arbitrary instant to be at point P. We set t¼ 0
when the planet is at the pericenter A.

In order to obtain the time-dependent solution, we first
introduce the eccentric anomaly w: an angle whose vertex is
at the center O of the ellipse. To do so, we draw an auxiliary
segment NQ perpendicular to the major axis AA0 through
point P so that Q belongs to the circumference circumscribed
to the elliptical trajectory. The eccentric anomaly is the angle
defined as w ¼ ]AOQ. We also define the mean anomaly
M¼xt which will be used later in Kepler’s equation.

The areal velocity is constant and, considering a full
period, equal to pab=s ¼ xab=2. Then,

t ¼ Area ASPð Þ
xab=2

; (7)

where ASP is the “slice” of the ellipse swept out by segment
SP from t¼ 0 to an arbitrary instant t. Similarly, consider now
Area(ASQ) as the area swept out by segment SQ over the
same time interval. Then (as shown in detail in Appendix A)

Area ASPð Þ ¼ b

a
Area ASQð Þ; (8)

which may be argued simply by the fact that, since for all t,
NP=NQ ¼ b=a, the ellipse is related to the circle through
stretching along the direction of the minor axis.

Substituting Eq. (8) into Eq. (7), we obtain

t ¼ 2

xab

b

a
Area ASQð Þ: (9)

Area(ASQ) can be obtained from more elementary areas.
Notice from Fig. 1 that the circular sector AOQ is the union
of triangle �SOQ and the region ASQ so that

t ¼ 2

xa2
Area AOQð Þ � Area �SOQð Þ
� �

¼ 2

xa2

a2w
2
� a2e sin w

2

� �
; (10)

where we used the fact that OS ¼ e a. Finally, the previous
result may be cast into the form

Fig. 1. The ellipse (dashed) with semi-axes a ¼ OA and b is the orbit of a

planet around a center of force S; the point closest to S in the trajectory (A)

is the pericenter, whereas the farthest point (A0) is the apocenter. A coplanar

circle with radius a is drawn so that its center O is the same as the ellipse’s

center.
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xt ¼ w� e sin w; (11)

which is Kepler’s equation.
Despite its simple appearance, Eq. (11) does not allow for

an analytical expression for w as a function of time, as it is
transcendental. Thus it must be solved numerically by means
of suitable approximation methods.

Let us relate angles w and u. To do so, we recall from
Fig. 1 that

sin w ¼ NQ

a
¼ a=bð ÞNP

a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

sin u
1þ e cos u

; (12)

where we used Eqs. (2) and NP=NQ ¼ b=a, with the relations
NP ¼ rðuÞ sin u and b ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

. Analogously, we have

cos w ¼ ON

a
¼ OSþ SN

a
¼ eþ cos u

1þ e cos u
; (13)

where we additionally used the relations OS ¼ e a and
SN ¼ rðuÞ cos u.

We conclude this section by expressing the position of the
planet as a function of time. Keeping in mind that the temporal
dependence of the eccentric anomaly is given by Kepler’s equa-
tion (11), and exploiting the geometrical properties shown in
Fig. 1, we have, in Cartesian coordinates with the origin placed
at S

xðtÞ ¼ ONðtÞ � OS ¼ a cos wðtÞ � e½ �; (14)

yðtÞ ¼ NPðtÞ ¼ b

a
NQðtÞ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

sin wðtÞ; (15)

or, in polar coordinates,

rðtÞ ¼ a 1� e cos wðtÞ½ �; (16)

cos uðtÞ ¼ cos wðtÞ � e
1� e cos wðtÞ ; (17)

sin uðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

sin wðtÞ
1� e cos wðtÞ ; (18)

where we used Eqs. (12) and (13).

III. BRIEF HISTORICAL SURVEY

Kepler’s equation (11) was obtained for the first time in
chapter 60 of Kepler’s famous book Astronomia Nova pub-
lished in 1609.7,8 After presenting his first two laws, namely,
that the orbit of a planet around the sun is an ellipse and the
so-called area law, in the previous chapter, Kepler then
derived his equation in a very geometric fashion fairly simi-
lar to the one presented in Sec. II B. Although in Astronomia
Nova Eq. (11) is not written with mathematical symbols,
Kepler was very precise in defining the mean anomaly and
the eccentric anomaly.

Solving Kepler’s equation (11) for the eccentric anomaly
and then obtaining the true anomaly with the aid of the equa-
tions written in Eqs. (17) and (18) as a function of the mean
anomaly, M¼xt, is far from being a simple task. Indeed
Kepler’s equation (11) is a transcendental equation. These
facts were noted by Johannes Kepler himself as is evident
from his own words:8

It is enough for me to believe that I could not solve
this a priori, owing to the heterogeneity of the arc
and the sine. Anyone who shows me my error and
points the way will be for me the great Apollonius.

Hence, one must find some approximations to solve that
equation. In spite of its apparent simplicity, this equation has
challenged for centuries some notable mathematicians, such
as Isaac Newton, Joseph Lagrange, Augustin-Louis Cauchy
and Friedrich Bessel, among others. In their efforts to find a
solution to Kepler’s equation, some important breakthroughs
in Mathematics occurred. A very nice and comprehensive
historical survey on this subject has been made by Colwell.12

The first approximate solution to Kepler’s equation was
done by Kepler himself by using an iterative numerical
method, which presumably converges to the correct solution.
Unfortunately, as shown by Euler, this method is conve-
nient—i.e., converges to the correct solution after few
steps—only for very small eccentricities. An improvement to
solve Kepler’s equation numerically was done by Newton,
published in Principia and it is now dubbed the Newton-
Raphson method.6 One can show that this method requires
only a few iterations to get excellent numerical precision.

Another way to find solutions to Kepler’s equation consists
in making a power series solution of the mean anomaly M or
the eccentricity e. Lagrange showed that the power series solu-
tion of Kepler’s equation converges only for small values of e.
Cauchy was not satisfied by this proof and introduced com-
plex variables to deal with this problem. For the first time, a
residue calculation and a systematic way of obtaining the con-
vergence radius of a power series were presented. Rather than
seek solutions in a power series of eccentricity, one can also
propose putative solutions in Fourier series for the mean
anomaly M. In 1818, this issue was tackled by Bessel, in a let-
ter written to Olbers,13 where he presented for the first time
the functions henceforth known as Bessel functions.

Interestingly, there are some non-analytic solutions to
Kepler’s equation.12 All are motivated by the need to find a
fast method to determine the position of the planet at an arbi-
trary instant of time. These non-analytic approaches seek an
approximate solution to Kepler’s equation (11); some of
them consider that the orbits do not satisfy Kepler’s second
law, others are neat geometrical constructions that rely on
some approximation. One of the most interesting solutions
was presented by Sir Christopher Wren, the architect of
Saint Paul’s Cathedral in London, who used the properties of
the cycloid to find a solution of Kepler’s equation.

Many other interesting methods to solve Kepler’s equation
have been developed since its appearance in 1609.
Moreover, this issue continues to be a topic of research.14–18

In order to apply Kepler’s equation in concrete situations, we
present in Secs. IV and V two interesting problems whose
solutions would be extremely involved without it.

IV. PROJECTILE LAUNCHING FROM EARTH

The main purpose of this section is to illustrate Kepler’s
equation in the computation of the range achieved by a pro-
jectile launched from the surface of the Earth considering its
rotation about its axis, that is, assuming a spinning Earth.
For simplicity, we shall consider a projectile launched from
the Earth’s equator with an initial velocity belonging to the
equatorial plane. As we shall see, the solution to this problem
demands the knowledge of the projectile’s time of flight, to
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be determined with the aid of Kepler’s equation. This is an
interesting problem for an undergraduate student for many
reasons, one of which is the following: as we shall see, a pro-
jectile’s range depends on the angular velocity of the Earth,
so that, in principle, measurements of the projectile’s range
could be used to prove Earth’s rotational movement, without
the need of a Foucault pendulum (though a Foucault pendu-
lum is much more convenient for this task).

Consider a projectile of mass m launched from a point at
the equator of the Earth (supposed a homogeneous sphere of
radius R and mass M� � m centered at O) with velocity V0

at an angle h0 with the planet’s surface. The projectile’s
energy E is insufficient for it to escape the gravitational
field—i.e., 0<V 0<V e, where V0 ¼ jV0j is the magnitude

of the projectile’s initial velocity and Ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM�=R

p
� 11:2 km=s is the escape velocity from the Earth’s surface.
If the particle’s angular momentum relative to O is such that
jLj 6¼ 0, the projectile’s trajectory will be an ellipse with one
focus located at O. The semi-major axis and eccentricity of
the ellipse are determined by the knowledge of the mechani-
cal energy E of the system and the projectile’s angular
momentum L2

a ¼ �GM�m

2E
; (19)

and

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2EL2

G2M2
�m3

s
: (20)

Let us then calculate the projectile’s range s along the surface of
the Earth. If the Earth did not spin it would suffice to find the
intersections between the projectile’s elliptical trajectory and the
surface of the Earth, and then calculate the great-circle distance
s¼Rd between them, where d is defined in Fig. 2, where we
took advantage of the ellipse’s symmetry to bisect d. The polar
axisOx was chosen as the major axis of the ellipse.

However, since the Earth does spin, to s¼Rd we must
add or subtract the distance the ground moves during the par-
ticle’s flight, depending on the particle’s initial velocity.

In what follows we will explicitly calculate the range for
each case. For the sake of clarity, and to establish some basic
concepts, we begin with the case of a stationary Earth.

A. Projectile launching from a stationary Earth

From Fig. 2, it is evident that d=2þ u0 ¼ p, so that

cos ðd=2Þ ¼ �cos u0: (21)

In order to relate d to the semi-major axis a and the eccen-
tricity e, we set rðu0Þ ¼ R in Eq. (2) and then use Eq. (21)

R¼ a 1�e2ð Þ
1þecosu0

) cos d=2ð Þ¼R�a 1�e2ð Þ
eR

: (22)

In the last equation, cos ðd=2Þ is written in terms of the geo-
metrical parameters a and e of the trajectory, but it is conve-
nient to write this result in terms of V0 and h0. With this
purpose, we write the expressions of the magnitude of the
particle’s angular momentum with respect to the center of

the Earth and the mechanical energy of the system in terms
of these quantities

L ¼ mV0R cos h0 and E ¼ mV2
0

2
� GM�m

R
: (23)

Defining the dimensionless constant n by

n ¼ V2
0R

GM�

¼ 2V2
0

V2
e

; (24)

the substitution of Eq. (23) into Eqs. (19) and (20) leads to

a ¼ R

2� n
(25)

and

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðn2 � 2nÞ cos2h0

q
: (26)

Substituting then Eqs. (25) and (26) into Eq. (22), we obtain

cos d=2ð Þ ¼ 1þ n2 � 2n
� �

cos2h0= 2� nð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2 � 2n

� �
cos2h0

q
¼ 1� n cos2h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n2 � 2n
� �

cos2h0

q : (27)

Finally, rearranging terms

s n; h0ð Þ ¼ Rd n; h0ð Þ

¼ 2Rarccos
1� n cos2h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n2 � 2n
� �

cos2h0

q
0
@

1
A: (28)

This gives the exact projectile’s range on a stationary Earth as a
function of n ¼ 2V2

0=V2
e and h0. This is already quite interest-

ing since, among other things, it shows that, for a fixed V0 (a
fixed n), the maximum range achieved by the projectile
depends on h0. In Fig. 3, we plot the projectile’s range normal-
ized by its maximum value, s=smax, as a function of h0 for dif-
ferent (fixed) values of n. It is evident from this figure that the
projectile’s range is maximum (s=smax ¼ 1) at different values
of h0. Besides, complementary launching angles do not lead to
the same projectile’s range, as in the usual case for n� 1.

Fig. 2. The elliptical trajectory (dashed) of a projectile launched from the

equator of the Earth (solid) with initial velocity V0. The true anomaly at the

launching point u0 and the projectile’s range s are also indicated.

852 Am. J. Phys., Vol. 86, No. 11, November 2018 Orlando et al. 852



In fact, it is not difficult to obtain the launching angle that
leads to the maximum projectile’s range, which we denote
by h0m. It suffices to maximize Eq. (28). As arccos is a
monotonic function, we just need to extremize its argument.
Doing that yields

cos h0m ¼
ffiffiffiffiffiffiffiffiffiffiffi

1

2� n

r
: (29)

A few comments are in order here. First note that in the limit
n! 0; cos h0m !

ffiffiffiffiffiffiffiffi
1=2

p
so that h0m ! p=4, as expected.

Besides, as n increases, cos h0m also increases and hence
h0m decreases, as it is evident in Fig. 3. However, although
0<V0<Ve implies 0< n< 2, the previous equation has
solutions only for 0 < n � 1, since 0 � cos2h0m � 1. For
1< n< 2, Eq. (29) does not admit any solution, which means
that for 1< n< 2, the projectile’s range is a monotonic func-
tion of h0.

This can be interpreted nicely: n¼ 1 means that
V0 ¼ Ve=

ffiffiffi
2
p

, which the reader may verify is the velocity of a
particle in a circular orbit with the radius of the Earth (a low-
pass circular orbit). Hence, if a projectile is launched with
n¼ 1, as the launching angle h0 diminishes, approaching zero,
the projectile’s range increases, approaching 2pR. For
1< n< 2, the maximum projectile range will also occur at
h0¼ 0 and will always be equal to 2pR, since for these values
of the projectile’s launching velocity the orbits will always be
ellipses with the perigee at the launching point (the only inter-
section point between the projectile’s orbit and the Earth).

We finish this subsection by making a last self-consistency
check on Eq. (28). We shall recover from this equation the
projectile’s range for very small initial velocities, for which
the projectile will experience a constant gravitational field. It
suffices to consider n� 1 in Eq. (27), in which we expand
both sides of the previous equation in powers of d (left hand
side) and n (right hand side), and retain terms only up to sec-
ond order. It is straightforward to show that

1� 1

2!

d
2

� �2

þO d4ð Þ¼ 1�ncos2h0

� �
1þncos2h0

�

�1

2
n2cos2h0þ

3

2
n2cos4h0þO n3

� ��

�1�n2

2
cos2h0 1�cos2h0

� �
¼1�n2

8
sin2 2h0ð Þ; (30)

so that we immediately identify d ¼ n sinð2h0Þ, which can
be substituted in s ¼ Rd to give the well known result for the
range of projectiles moving near the surface of the Earth,

namely, s ¼ V2
0

g sinð2h0Þ, where g ¼ GM�

R2 is the magnitude of

the gravitational field at the surface.

B. Projectile launching from a rotating Earth

A more involved problem is that of determining the pro-
jectile’s range considering a rotating Earth. It is clear, now,
that we need to calculate the distance covered by the ground
during the projectile’s flight. For simplicity, we assume the
Earth rotates with a constant angular velocity X perpendicu-
lar to the equatorial plane and, thus, also to the launching
velocity. Let v0 be the projectile’s launching velocity with
respect to a frame rotating rigidly with the Earth and let f be
the smallest angle between v0 and the surface of the planet.
Since, for our purposes, it is desirable to write the projec-
tile’s range in terms of v0 ¼ jv0j and f, the first thing we
need to do is to express V0 and h0 in terms of v0 and f.

Due to the rotation of the Earth, and denoting by Vt the
velocity of the launching point at the equator, the Galilean
composition of velocities allows us to write immediately
V0 ¼ v0 þ Vt, where Vt ¼ XRt̂, with X ¼ jXj and
t̂ ¼ Vt=jVtj. Figure 4 shows all these velocities as well as
the relevant angles.

The algebraic relation between the angles and magnitudes
of the velocities may then be written

V2
06 ¼ ðv0 þ VtÞ2 ¼ v2

0 þ X2R262v0XR cos f; (31)

where the signs depend on whether the projectile is launched
in the same (þ) or opposite (–) direction of the rotation of
the Earth. Notice that Fig. 4 was drawn for the first case, to
avoid overloading it. From the same figure,

sin h06 ¼
v0

V06

sin f: (32)

Note that for v0 cos f < XR, even for the case where the pro-
jectile is launched against the rotation, its motion will be
towards the rotation.

Let us then proceed to calculate the projectile’s range.
Assuming, initially, that the projectile is launched in such a
way that it falls ahead of the launching point, the projectile’s
range is given by

A ¼ s� XRtflight; (33)

Fig. 3. (color online) Normalized range for different values of n as a func-

tion of the launching angle h0.

Fig. 4. Projectile launched in the direction of Earth’s rotation, from a point

on the equator of the Earth.
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where XRtflight is the distance covered by the launching point
during the projectile’s flight, to be determined with the aid of
Kepler’s equation (11), and s is given by Eq. (28).

Let t0 be the instant the particle is launched and t1, the
instant it lands. Also, let w0 and w1 be the eccentric anoma-
lies at the launching and landing points, respectively. The
symmetry displayed in Fig. 5 makes it evident that
w1 ¼ 2p� w0.

Using the above results, as well as Kepler’s equation, the
projectile’s time of flight is given by

tflight¼ t1� t0

¼ 1

x
w1�esinw1ð Þ� w0�esinw0ð Þ

� �
¼ 1

x
2p�w0�esin 2p�w0ð Þ�w0þesinw0

� �
¼ 2

x
p�w0þesinw0f g; (34)

where e has already been expressed in terms of V0 and h0

through Eq. (26), with n defined by Eq. (24). Then, if we
express x and w0 in terms of V0 and h0 (which have already
been written in terms of v0 and f) we will have succeeded in
expressing tflight in terms of v0 and f.

Kepler’s third law applied to the projectile-Earth system

states that s2

a3 ¼ 4p2

GM�
, where s would be the period of the pro-

jectile in its entire elliptical orbit if all the mass of the Earth
were concentrated in its center. This equation can be written

as x2 ¼ 2p
s

� �2 ¼ GM�

a3 , which, by substitution of Eq. (25),

takes the form

x ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM�

R3

r
1� n

2

� �3
2

; (35)

with n being given in Eq. (24).
It is convenient to express w0 in terms of n ¼ V2

0R=ðGM�Þ
and h0. This lengthy but straightforward calculation (which
is shown in detail in Appendix B) yields

sin w0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� n2

1þ n2 � 2n
� �

cos2h0

s
sin h0; (36)

cos w0 ¼
n� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n2 � 2n
� �

cos2h0

q : (37)

Since sin a ¼ sinðp� aÞ, Eq. (36) allows for two solutions for
w0. From Eq. (37) it is evident that if n � 1, then w0 � p=2
and if n> 1, then w0 < p=2, so that

w0¼

p�arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n�n2

1þ n2�2n
� �

cos2h0

s
sinh0

0
@

1
A ifn�1

arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n�n2

1þ n2�2n
� �

cos2h0

s
sinh0

0
@

1
A ifn>1:

8>>>>>>><
>>>>>>>:

(38)

Then, the projectile’s time of flight in Eq. (34) can be rewrit-
ten using Eqs. (35) and (36) as

tflight¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

2GM�

s
1�n

2

� ��3
2

p�w0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n�n2

q
sinh0

� �
:

(39)

In order to decide which expression for w0 in Eq. (38) should
be substituted in the previous equation, we must determine
whether n> 1 or n � 1.

Henceforth, we shall assume the condition v0 < XR. In this
case, as V0 ¼ jv0 þ XRt̂j < 2XR and, using the numerical
values X ¼ 2p rad=day; R � 6400 km and Ve � 11:2 km=s,
we have that n ¼ 2V2

0=V2
e < 1, so that the final expression for

the projectile’s time of flight is

tflight ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

2GM�

s
1� n

2

� ��3
2

	 arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� n2

1þ n2 � 2n
� �

cos2h0

s
sin h0

0
@

1
A

0
@

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� n2

q
sin h0

1
A; ð40Þ

regardless of whether the projectile is launched against or
with the Earth’s rotation.

Equation (40) is one of the main results of this section, to
be used in the computation of the projectile’s range. It is an

exact result and recalling the definition n ¼ 2V2
0=V2

e along
with Eqs. (31) and (32), tflight can be explicitly expressed in
terms of the norm of the projectile’s velocity relative to the
rotating Earth, v0, and the angle f.

Before we proceed, let us check once again the self-
consistency of our calculations by recovering the time of flight
for projectiles launched with very small velocities, so that
they experience a constant gravitational field and describe a
parabolic trajectory. In this particular regime, we have n� 1,

so that e sin w0 �
ffiffiffiffiffi
2n
p

sin h0. Also, since, near the Earth, the
projectile describes a parabolic trajectory, we may write

Fig. 5. True anomalies u0 and u1 at launching and landing points, respec-

tively, and the corresponding eccentric anomalies, w0 and w1. To avoid over-

loading the figure, we omitted the Earth, whose center coincides with the

focus F of the ellipse.
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e � 1, so that sin w0 �
ffiffiffiffiffi
2n
p

sin h0. Since, for small values of
n, w0 is close to p, sin w0 ¼ sinðp� w0Þ � p� w0.

Therefore, w0 � p�
ffiffiffiffiffi
2n
p

sin h0. For small n, we have

x � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM�=R3

p
. Substituting all these results into Eq.

(34), we obtain tflight � 2V0 sin h0R2=ðGM�Þ ¼ 2V0 sin h0=g,
the well-known result for a constant gravitational field.

Although A depends on X, we could naively think that two
projectiles launched with initial velocities relative to the
Earth of the same magnitude v0 and the same launching
angle f, but in opposite directions, would have the same
range, as it occurs in the usual case of small velocities.
However, this is not true in the general case.

First of all, the condition that the projectile is launched
towards the rotation of the Earth is not sufficient to deter-
mine if it will fall ahead (i.e., to the east) of the launching
point. Notice that, from conservation of angular momentum,
_u ¼ XR=r. During the flight, r > R) _u < X, so the projec-
tile will travel a smaller angular displacement than the sur-
face. Then an upward throw (f¼p/2) would result in the
projectile falling to the west of its launching point,20 which
means that for every v0 there must be a critical angle
fcðv0Þ < p=2 (but, in Earth’s case, very close to p/2) for
which the projectile lands back in it.

Let Aþ be the projectile’s range with launching velocity rel-
ative to the Earth v0 pointing east with an angle f < fc simi-
larly to Fig. 4, so that it lands to the east of the launching
point, and A– the range of a similar projectile that differs from
the first one only in that it points west (in this case v0 and Vt

form an obtuse angle p� f). Then Aþ is precisely given in
Eq. (33), but calculated with nþ ¼ 2V2

0þ=V2
e and h0þ, that is,

Aþ ¼ sðnþ; h0þÞ � XRtflightðnþ; h0þÞ. Figure 6 shows Aþ as a
function of v0 for f ¼ p=4. In this figure, we marked three ref-
erence values of v0, namely, the velocity of a point at the
Earth’s equator, XR, the value of v0 whose (local) horizontal
component equals XR, and the launching velocity of a bullet
for a typical firearm, approximately 1000 m=s.

The computation of A– is more subtle for the following rea-
sons. First, it must be computed with variables n� ¼ 2V2

0�=V2
e

and h0�. Second, for 0 < v0 < XR= cos f, it is given by

A� ¼ XRtflightðn�; h0�Þ � sðn�; h0�Þ; (41)

since in this case, although it falls to the west of the launch-
ing point, the projectile in effect still moves east. (Notice

that this is also the case when pointing v0 eastwards, but
with f > fc.) On the other hand, for the case where
v0 > XR= cos f, but such that V0� is still smaller than Ve, A–

must be computed by

A� ¼ XRtflightðn�; h0�Þ þ sðn�; h0�Þ; (42)

since in this case the projectile moves in the direction oppo-
site to the rotation of the Earth. We are now able to compare
Aþ and A– for two projectiles launched in opposite directions
but with the same values of v0 and f (note that nþ and n–, as
well as h0þ and h0– are not the same, as is evident from Eqs.
(31) and (32). Figure 7 shows the difference Aþ – A– for two
projectiles launched in opposite directions with the same
launching angle f¼p/4 and the same launching velocities
relative to the Earth v0, as a function of v0.

As anticipated, Aþ 6¼ A�, contrary to what we might
naively expect. If we use as projectiles to compute Aþ – A–

the bullets shot from a typical weapon, like, for instance, an
AR-15, and use a launching angle f ¼ p=4 for both shots in
opposite directions, the difference in the corresponding
ranges would be approximately 1.3 km if the shots occur at
zero latitude, as shown in Fig. 7. In this sense, the rotation of
the Earth could be proved without appealing to any Foucault
pendulum, by only comparing projectile’s ranges in opposite
directions. Of course, for practical reasons, a Foucault pen-
dulum is much more convenient for this task. The impor-
tance of the previous calculations lies, obviously, not in
proving Earth’s rotation, but in its relevant applications in
the study of the motions of projectiles and satellites around
the Earth, and in the Kepler problem in general.

V. HOW DOES AN ASTRONAUT SEND A

SANDWICH TO ANOTHER ASTRONAUT?

As another application of Kepler’s equation, let us solve a
quite academic but very nice problem involving two astro-
nauts, 1 and 2, moving along the same circular orbit of radius
R0 around the Earth. Neglect the gravitational attraction
between the astronauts, so that both of them are under the
influence of only the Earth’s gravitational field. Suppose
astronaut 1, who is ahead in the orbit of astronaut 2 by a
given (but arbitrary) angular displacement /, decides to send
him a sandwich. How must he do it? A trivial solution would

Fig. 6. Plot of Aþ as a function of v0 for a fixed launching angle f ¼ p/4.

Fig. 7. Plot of Aþ – A– as a function of v0 for equal launching angles f¼p/4,

where we used vAR�15 ¼ 973 m=s as a reference for a launching velocity

from a firearm.
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be to send the sandwich along the same circular orbit as the
astronauts, but in the opposite direction, as discussed by
Walter Lewin.19 However, this would not require knowledge
of the time of flight.

In order to simplify things slightly, let us suppose that astro-
naut 1 throws the sandwich impinging upon it an outward
radial impulse of magnitude mvr0, where m is the mass of the
sandwich, so that its launching velocity relative to an inertial
reference frame is given by V0 ¼ VAĥ þ vr0r̂, where VA

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM�=R0

p
is the magnitude of the velocity of each astro-

naut in the circular orbit, as indicated in Fig. 8. In this figure,
the positions of the astronauts are indicated at two instants: at
the initial instant when the sandwich is thrown (positions 1
and 2) and when astronaut 2 catches it (10 and 20).

We neglected the radial impulse received by astronaut 1
(as a consequence of Newton’s third law) since its mass is
much greater than m. It is worth emphasizing that this effect
does not affect our result, since it does not alter the fact that
astronaut 2 describes a circular orbit until the moment he
catches the sandwich.

Let us denote by d the angular displacement of the sand-
wich since it is thrown by the first astronaut (at position 1)
until it is caught by the second astronaut (at position 20) and
by tflight the time interval for this process. As we shall see in
a moment, it can be shown that d ¼ p, regardless of the
value of vr0 (note that we already used this information in
Fig. 8).

Hence, for astronaut 2 to catch the sandwich in the least
possible time interval, his angular displacement during the
time interval tflight must satisfy the relation

pþ / ¼ Xtflight; (43)

where X ¼ VA=R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM�=R3

0

q
is the angular velocity of

the astronauts in their circular orbits.
From the relation V0 ¼ VAĥ þ vr0r̂ we immediately have

V2
0 ¼ V2

A þ v2
r0 ¼

GM�

R0

þ v2
r0 ¼

GM�

R0

1þ v2
r0R0

GM�

� �
;

(44)

and, consequently,

n ¼ 2V2
0

V2
e

¼ 1þ v2
r0R0

GM�

; (45)

where Ve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM�=R0

p
now means the escape velocity

from an initial distance R0 from the center of the Earth.
Since n > 1, in order to compute tflight we must substitute in
Eq. (39) the second line of Eq. (38) (and not the first line, as
in the previous example), which yields

tflight ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

0

2GM�

s
1� n

2

� ��3
2

	 p� arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� n2

1þ n2 � 2n
� �

cos2h0

s
sin h0

0
@

1
A

0
@

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� n2

q
sin h0

1
CA; ð46Þ

where in the previous equation n is given in Eq. (45). If h0 is
the smallest angle between V0 and VA, we have

tan h0 ¼
vr0

VA
) tan2h0 ¼

v2
r0R0

GM�

¼ n� 1

) n ¼ 1þ tan2h0 ¼ sec2h0; (47)

where we used Eq. (45). Note that the substitution of Eq.
(47) into Eq. (28) leads to d ¼ 2arccosð0Þ ¼ p, as antici-
pated. Though d ¼ p regardless of the value of vr0, this does
not mean that tflight is equal to half the period of the elliptical
motion of the sandwich. Only for small radial oscillations
this would happen, for in such a case the radial oscillations
would be harmonic.

Substituting Eq. (47) into Eq. (46) it is straightforward to
show that

tflight ¼
R0

Ve

1� sec2h0

2

� ��3
2

p� arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� sec2h0

p	

þ tan h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� sec2h0

p 

: ð48Þ

Since we are looking for the value of vr0 that solves the prob-
lem, it is convenient to eliminate h0 and n from the last equa-
tion in favor of vr0, which can be done using Eq. (47). Doing
that, and imposing the condition in Eq. (43), pþ / ¼ Xtflight,
the desired solution must satisfy the following transcendental
equation:

1

2
pþ /ð Þ 1� 2

v2
r0

V2
e

 !3=2

¼ p� arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2v2

r0

V2
e

s

þ
ffiffiffi
2
p

vr0

Ve

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2v2

r0

V2
e

s
; (49)

which we rewrite with a simplified notation as

Lð/; vr0=VeÞ ¼ Rðvr0=VeÞ;

where Lð/; vr0=VeÞ and Rðvr0=VeÞ are, respectively, the left-
hand side and the right-hand side of Eq. (49). This is a rather

Fig. 8. Elliptical trajectory (dashed) of a sandwich sent by the first astronaut

at position 1 and caught by the second astronaut at position 20. The astro-

nauts move in the circular orbit and are displaced by an angle /.
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complicated equation for vr0, due to its transcendental
character. However, it can be solved graphically as shown in
Fig. 9. We simply plot both L—choosing, to illustrate, some
values for the angular displacement /—and R as a function
of vr0 normalized by the escape velocity Ve, then look for the
intersecting points.

It is evident from Fig. 9 that if the angular displacement /
between the two astronauts is increased the value of the radial
component of the launching velocity of the sandwich, vr0, must
also be increased for astronaut 2 to catch the sandwich.
Qualitatively, this can be understood as follows: as / increases,
the angular displacement covered by astronaut 2, namely,
pþ /, also increases so that he/she needs more time to execute
uniform circular motion with angular velocity X. Greater times
of flight are accomplished by greater values of vr0.

VI. FINAL REMARKS AND CONCLUSIONS

In this work, we tried to highlight the richness of Kepler’s
equation in many aspects, from a historical point of view,
through the many developments in both mathematics and phys-
ics that appeared in the attempts to solve this equation, to its
power in solving complicated problems of planetary motion,
particularly those involving the determination of time intervals
in such problems. It is unbelievable that this equation was
established in 1609, much before the advent of integral and dif-
ferential calculus. In this sense, this equation could be taught,
in principle, in very introductory courses in classical mechanics.
But somewhat curiously, Kepler’s equation is absent from most
undergraduate textbooks. In order to illustrate explicitly how
this equation can be used in solving specific problems, we
chose two interesting ones which demanded the calculation of
the time of flight in different situations.

In the first one, we calculated a projectile’s range launched
from a rotating Earth, a quite involved problem of great prac-
tical interest. We established quite general formulas for this
kind of problem. For the particular case of a stationary Earth,
we obtained a general formula for a projectile’s range and
showed explicitly that the maximum range occurs for a
launching angle smaller than p=4 and that complementary
angles do not lead to the same range, in contrast with what
happens for small launching velocities. For the case of a
rotating Earth, we showed that the projectile’s range
depends, indeed, on the Earth’s angular velocity. In addition,
in contrast to what happens for small launching velocities,
two projectiles launched with velocities of the same magni-
tude with respect to the Earth and with the same launching
angles but in opposite directions have different ranges.

In the second example, a much more academic problem,
we discussed a possible way for an astronaut to send a sand-
wich to another astronaut moving in the same circular orbit
around the Earth. For simplicity, we assumed the first astro-
naut impinged on the sandwich a radial impulse of magni-
tude mvr0. It is worth emphasizing that, curious as it may
seem, in this problem, no matter what the value of the radius
R0 of the circular orbit of the astronauts is, the angular dis-
placement of the sandwich until it is caught by the second
astronaut will be always equal to p. Even in this particular
case, the solution is given by a transcendental equation for
vr0, which we solved graphically in Sec. V.

We think these two problems, as well as all the initial dis-
cussion on Kepler’s equation, may serve as a nice comple-
mentary material for undergraduate courses on classical
mechanics.
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APPENDIX A: RELATIONSHIP BETWEEN AREAS

IN SECTION II

In this appendix, we demonstrate in greater detail the rela-
tionship between the areas used to obtain Eq. (11).
AreaðASQÞ is the area of the region limited by segments
AS; SQ and arc QA in Fig. 1. We may relate AreaðASQÞ to
AreaðASPÞ as follows:

Both areas can be divided into triangles (�NSP and
�NSQ, respectively) and the remaining curved wedges
(ANQ and ANP). In order to compare them, let us compute
the ratio NP / NQ. Choosing suitable Cartesian axes Oxy so
that Ox contains OA, and the corresponding equations for
the ellipse and the circle, respectively, we may write

ONð Þ2

a2
þ NPð Þ2

b2
¼ 1 ) NP ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ONð Þ2

a2

s
;

ONð Þ2 þ NQð Þ2 ¼ a2 ) NQ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ONð Þ2

a2

s
;

so that

Area �NSPð Þ
Area �NSQð Þ ¼

NP

NQ
¼ b

a
: (A1)

For the wedges,

Area ANPð Þ
Area ANQð Þ ¼

ða

a cos w
NPð Þdxða

a cos w
NQð Þdx

¼ b

a
: (A2)

Equations (A1) and (A2) imply that the ratio b/a holds for
the entire areas, as in Eq. (8).Fig. 9. Plot of Eq. (49).
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APPENDIX B: DETAILED CALCULATIONS FOR

SECTION IV B

In this appendix, we present a detailed derivation of Eqs.
(36) and (37). The starting point will be Eq. (12) evaluated
for w0 and u0

sin w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

sin u0

1þ e cos u0

: (B1)

From Eq. (21), cos u0 ¼ �cosðd=2Þ, we get

sin u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2u0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2ðd=2Þ

p
: (B2)

Substitution of the above equations into Eq. (B1) gives

sin w0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2ð Þ 1� cos2 d=2ð Þ

� �q
1� e cos d=2ð Þ : (B3)

Substituting Eqs. (26) and (27) into Eq. (B3), we can
finally obtain sin w0 as a function of V0 and h0, recalling that
n ¼ V2

0R=ðGM�Þ

sin w0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2ð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 d=2ð Þ
� �q

1� e cos d=2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1þ n2 � 2n

� �
cos2h0

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� n cos2h0ð Þ2

1þ n2 � 2n
� �

cos2h0

s

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2 � 2n

� �
cos2h0

q
1� n cos2h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n2 � 2n
� �

cos2h0

q
0
@

1
A

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� n2
� �

cos2h0

q
n cos2h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 cos2h0 1� cos2h0ð Þ
1þ n2 � 2n

� �
cos2h0

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� n2
� �

1þ n2 � 2n
� �

cos2h0

s
sin h0;

which is precisely Eq. (36).
Equation (37) can be obtained by the simple trigonometric

identity sin2w0 þ cos2w0 ¼ 1, so that in this case

cos2w0 ¼ 1� 2n� n2
� �

sin2h0

1þ n2 � 2n
� �

cos2h0

¼ n� 1ð Þ2

1þ n2 � 2n
� �

cos2h0

: (B4)
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