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Abstract
We discuss the classical motion of a finite mass spring coupled to two pointlike
masses fixed at its ends. A general approach to the problem is presented
and some general results are obtained. Examples for which a simple elastic
function can be inferred are discussed and the normal modes and normal
frequencies obtained. An approximation procedure to the evaluation of the
normal frequencies in the case of uniform elastic function and mass density is
also discussed.

1. Introduction

The motion of one or two masses linked by a massless spring constrained to move on a straight
line and without friction is analysed in several introductory and undergraduate mechanics
textbooks, see for example [1, 2]. In the case of two arbitrary masses, the two-body problem
is solved by a reduction to the problem of a single body oscillating with an angular frequency
equal to

√
Ke/µ, where Ke is the spring constant and µ is the reduced mass of the system,

and to the motion of the centre of mass of the system the velocity of which is constant if no
external forces are present. Moreover, since only the masses make contributions to the kinetic
energy and to the total linear momentum, the mechanical energy conservation theorem and the
linear momentum conservation theorem can be applied without much ado. The forces acting
on the masses are due to the spring deformation at the extremities where the masses are fixed
to. This is the reason why Newton’s third law of motion cannot be directly applied to the
masses. We are forced to consider in more detail the mechanism of interaction between the
two masses and in particular their interaction with the extremities of the spring to which each
one of them is fixed to. However, due to the fact that the spring is massless we can also state
that at any given moment of time the sum of those forces is zero. Then, in an equivalent way,
we can think that the masses move under the action of the force that one mass exerts on the
other, thereby complying with the third law in such a way that we can ignore the existence of
the spring.
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Figure 1. The motion of a point of the spring with respect to an inertial frame is described by
the coordinate u(x, t). Given a point P of the spring, we associated with it the parameter x. This
association is independent of the dynamical state of the spring.

The correction to the frequency for the case where one of the springs is held fixed and the
mass m of the spring, though not zero, is much less than the mass M fixed to the oscillating
end is well known. In this case in order to get the angular frequency up to first order, we can
consider the massless spring and replace the mass of the oscillating body by an effective mass
that is equal to M + m/3, see for example [1], see also [3] and references therein.

In this paper we will consider a more general situation. We will consider the problem of
two arbitrary masses, say M1 and M2, fixed to a spring of arbitrary finite mass m. The effects
caused by the propagation of the spring deformation along the spring length will be taken into
account. Solutions to particular situations such as the ones described above will be considered
as appropriate limits of a less particular solution. We believe that the approach we take here
may be of some pedagogical value for advanced students and instructors as well.

2. The equations of motion of the system

We begin by establishing the equation of motion for the finite mass spring along a single
spatial dimension. In order to do so we introduce an auxiliary parameter x that will help us to
describe the properties of the spring such as, for example, its tension or its density at a given
point. With this aim in mind, let us consider the spring in a non-deformed state and denote by
� its natural length. Now we define a one-to-one correspondence between the spring viewed
as a one-dimensional smooth matter distribution and the closed interval [0, �] in such a way
that x = 0 corresponds to the left end of the spring and x = � to its right end, see figure 1. To
an arbitrary point P on the spring corresponds a point x ∈ [0, �]. The parameter x must not
be viewed as a regular spatial coordinate. This parameter can be thought of, if we wish, as an
internal degree of freedom of the spring and it is not subject to the transformations associated
with the one-dimensional Galilean group, for instance, non-relativistic boosts or translations.
Were the string made up of N discrete masses labelled by a discrete index j running from 1
to N, this index would have played a role analogous to x. We assume that the correspondence
established here holds for any state of motion of the spring, exactly as in the case of the discrete
model. Let it be now an inertial reference frame S and a suitable coordinate system and let
us suppose that the spring moves along the u-axis in such a way that the position of a point of
the spring with respect to S is given by the function u(x, t), see figure 1. The tension T at a
point of a spring is given by [4]

T (x, t) = κ(x)
∂η(x, t)

∂x
, (1)

where κ(x) is the elastic function of the spring which, on physical grounds, we suppose to
be always positive and η(x, t) is its deformation function. If the spring is in motion then the
deformation can be written as

η(x, t) = u(x, t) − u(0, t) − x. (2)
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Therefore, we can write

T (x, t) = κ(x)

(
∂u(x, t)

∂x
− 1

)
. (3)

It is not hard to see that κ(x) > 0 for any x ∈ [0, �]. At a given point, the force that the right
portion of the spring exerts on the left portion will be T (x, t) and conversely the force that
the left portion of the spring exerts on the right portion will be −T (x, t). Consider now an
element of the spring determined by x and x + dx. The resultant force acting on this element is

dF(x, t) = T (x + dx, t) − T (x, t)

= ∂

∂x

[
κ (x)

(
∂u(x, t)

∂x
− 1

)]
dx. (4)

If ρ(x) is the linear mass density of the spring then, after applying Newton’s second law of
motion to the element of mass ρ(x) dx, we obtain

∂

∂x

[
κ(x)

(
∂u(x, t)

∂x
− 1

)]
= ρ(x)

∂2u(x, t)

∂t2
. (5)

Equation (5) controls the motion of the spring. It can be simplified by introducing the variable

ξ(x, t) = u(x, t) − x. (6)

Then the equation of motion of the spring will read

∂

∂x

[
κ(x)

∂ξ(x, t)

∂x

]
= ρ(x)

∂2ξ(x, t)

∂t2
. (7)

A word of caution: though ξ(x, t) is related to the deformation of the spring, it does not
represent this deformation directly.

Note that the equation of motion of the massive spring in the form given by equation (5)
or (7) is invariant under Galilean transformations. In fact, if we go from the inertial system S
to the inertial system S ′ that moves with velocity V with respect to S, the following evident
relations hold:

u′(x, t) = u(x, t) + V t, (8)

∂u′(x, t)

∂x
= ∂u(x, t)

∂x
, (9)

∂2u′(x, t)

∂t2
= ∂2u(x, t)

∂t2
. (10)

In this sense, the Galilean invariance of the equation of motion of the spring is manifest in
accordance with the fact that this equation derives from a straightforward application of the
principles of Newtonian mechanics.

Let us now consider the coupled masses. Let us model them by means of two pointlike
particles, one of mass M1 coupled to the left end (x = 0) of the spring and the other of mass
M2 coupled to the right end (x = �). Making use of equation (7) and Newton’s second and
third laws, we can write the equations of motion of the masses as

M1
∂2ξ(0, t)

∂t2
= κ(0)

∂ξ(0, t)

∂x
, (11)

M2
∂2ξ(�, t)

∂t2
= −κ(�)

∂ξ(�, t)

∂x
. (12)
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The complete solution of these equations and of equation (7) demands that we prescribe the
initial conditions

ξ(x, t = 0) = ϕ(x) − x, (13)

∂ξ(x, t = 0)

∂t
= ψ(x), (14)

where ϕ(x) = u(x, 0) and ψ(x) = ∂u(x, t = 0)/∂t describe the initial position and velocity
of the points of the spring.

Our aim is to obtain a general solution ξ(x, t)—or u(x, t)—to the problem and therefore
describe an arbitrary state of motion of the system, i.e. the two pointlike masses plus the
massive string.

3. General solution of the equations of motion

We begin by solving equation (7) by the method of separation of variables, that is, we look for
a solution of the form

ξ(x, t) = X(x)T (t) (15)

that satisfy also the boundary conditions given by equations (11) and (12). Substituting
equation (15) into (7) and introducing the separation constant −λ, we have

d2T (t)

dt2
+ λT (t) = 0, (16)

d

dx

[
κ(x)

dX(x)

dx

]
+ λρ(x)X(x) = 0. (17)

Equation (11) imposes a boundary condition on equation (17). In order to obtain this boundary
condition, we substitute equation (15) into equation (11) and write

M1X(0)
d2T (t)

dt2
= κ(0)T (t)

dX(0)

dx
, (18)

and, taking into account equation (16), we obtain (the prime indicates derivative with respect
to x)

κ(0)X′(0) = −λM1X(0). (19)

In the same way, substituting equation (15) into (12) and combining with equation (16), we
obtain the condition

κ(�)X′(�) = λM2X(�), (20)

Let us now show that the eigenvalue λ cannot assume negative values. Suppose that we have
an eigenfunction X(x) corresponding to a particular eigenvalue λ. Consider the following
identity which can be derived after an integration by parts and use of equations (17), (19)
and (20): ∫ �

0
κ(x)X′2(x) dx = λ

[
M1X

2(0) + M2X
2(�)) +

∫ �

o

ρ(x)X2(x) dx

]
. (21)

Since the left-hand side is always non-negative and the bracket on the right-hand side is always
positive, we conclude that λ is non-negative.

The null eigenvalue is physically acceptable and has a special meaning. The reason is
that λ = 0 is common to all springs regardless of their mass density, elastic function and the
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masses of the bodies fixed to their extremities. Note that the corresponding eigenfunction (the
zero mode) can be obtained in a general form. This particular mode is not associated with an
oscillatory motion of the spring. In fact, for λ = 0 the temporal function has the form

T (t) = β0 + α0t, (22)

where α0 and β0 are constants. On the other hand, equation (17) for λ = 0 yields

dX(x)

dx
= γ

κ(x)
, (23)

where γ is an integration constant. Boundary conditions as expressed by equations (11)
and (12), or equivalently equations (19) and (20), demand γ = 0 so that X(x) = b = constant.
The eigenfunction corresponding to this eigenvalue is then

ξ0(x, t) = b(β0 + α0t)

= x0 + V0t, (24)

where we have introduced the new constants x0 and V0. It is clear that this solution corresponds
to a uniform motion of the entire system (masses plus spring) with a common velocity V0.
The zero-mode motion is related to Galilean boosts and may be added to any other solution of
the problem if questions about the Galilean invariance are an issue.

Finally, let us consider the case of positive λ. Setting λ = ω2 for convenience, we write
the solutions of equation (16) as

Tn(t) = An cos(ωnt + φn), (25)

where n is a positive integer, ωn is the nth frequency eigenvalue indexed in crescent order
(ω1 < ω2 < ω3 · · ·) and An and φn are constants. The nth eigensolution to equation (7)
corresponding to the nth eigenfrequency is

ξn(x, t) = Xn(x)Tn(t). (26)

These modes represent the oscillatory modes of the system. The general solution can be
written as

ξ(x, t) = x0 + V0t +
∞∑

n=1

Xn(x)Tn(t). (27)

Consequently, in terms of the function u(x, t), the general solution will be given by

u(x, t) = x0 + x + V0t +
∞∑

n=1

Xn(x)Tn(t). (28)

The next step is the explicit determination of the spectrum of eigenfrequencies. This is,
however, a hard task to perform and in principle it can be accomplished only if we also know
explicitly the elastic function κ(x). As mentioned before, the zero mode is the only mode that
does not depend on the form of κ(x).

4. The orthogonality of the eigenfunctions

Before dealing with concrete examples, let us consider a little bit more some of the formal
aspects of our problem. Equations (19) and (20) can be read as boundary conditions for
equation (17). Therefore, only for certain values of λ, there will be solutions to this equation.
The reader will immediately recognize that we are dealing with a Sturm–Liouville system. Let
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us then consider two different eigenvalues, say λm and λn and their respective eigenfunctions
Xm(x) and Xn (x). These eigenfunctions satisfy the differential equations

d

dx

[
κ(x)

dXm(x)

dx

]
+ λmρXm(x) = 0 (29)

and
d

dx

[
κ(x)

dXn(x)

dx

]
+ λnρXn(x) = 0. (30)

As usual, we multiply the first equation by Xn and the second by Xm, subtract one from the
other and after simple additional manipulations, we end up with

(λm − λn)ρ(x)Xm(x)Xn(x) +
d

dx

[
κ(x)

(
Xn(x)

dXm(x)

dx
− Xm(x)

dXn(x)

dx

)]
= 0. (31)

Integrating this last equation over the domain [0, �] and taking into account the boundary
conditions given by equations (19) and (20), we obtain, after some simplifications,

(λm − λn)

[∫ l

0
ρ(x)Xm(x)Xn(x) dx + M2Xm(l)Xn(l) + M1Xm(0)Xn(0)

]
= 0. (32)

At this point, we define a scalar product that will be convenient for our purposes. Let the
functions f (x) and g(x) be defined in the closed interval [0, l]. Then, by definition, their
scalar product is

〈f, g〉 =
∫ l

0
ρ(x)f (x)g(x) dx + M2f (l)g(l) + M1f (0)g(0). (33)

With this definition for the scalar product, we can consider the eigenfunctions corresponding
to different eigenvalues as an orthonormal set of eigenfunctions, i.e.

〈Xm,Xn〉 = δmn, m, n = 0, 1, 2, . . . . (34)

By making use of the initial conditions and the above orthonormality condition, the
determination of the constants An and φn that appear in equation (25) and, therefore, in
the general solution can be carried out in a systematic way. For the zero mode, for instance,
we have

X0(x) = 1√
M1 + M2 + m

. (35)

5. Conservation laws

Linear momentum and mechanical energy conservation theorems can be proved under quite
general conditions. The former depends on the fact that the system is isolated and the latter
depends also on the fact that the internal forces can be considered as conservatives. Let us
first consider the linear momentum of the system. Our goal will be to determine explicitly the
contribution of the massive spring to the total linear momentum.

The linear momentum due to the two pointlike masses is given by

Pmasses = M1
∂u(0, t)

∂t
+ M2

∂u(�, t)

∂t
. (36)

Making use of equations (11) and (12), we can recast the total time derivative of Pblocks into
the form

dPblocks

dt
= k(0)

∂ξ(0, t)

∂x
− k(�)

∂ξ(�, t)

∂x
. (37)
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On the other hand, we can integrate equation (7) over the domain [0, �] to obtain

d2

dt2

∫ �

0
ρ(x) ξ(x, t) dx = k (�)

∂ξ(�, t)

∂x
− k(0)

∂ξ(0, t)

∂x
. (38)

Taking this result into equation (37), we have

d

dt

(
Pmasses +

∫ l

0
ρ(x)

∂ξ(x, t)

∂t
dx

)
= 0. (39)

Defining the linear momentum of the spring by

Pspring =
∫ l

0
ρ(x)

∂u(x, t)

∂t
dx =

∫ l

0
ρ(x)

∂ξ(x, t)

∂t
dx, (40)

we see that the total linear momentum of the system Pblocks + Pspring is conserved. The total
linear momentum can be rewritten in the form

Ptotal = M1
du1(t)

dt
+ M2

du2(t)

dt
+

∫ l

0
ρ(x)

∂u(x, t)

∂t
dx, (41)

where u1(t) ≡ u(0, t) and u2(t) ≡ u(�, t). In terms of ξ(x, t), we have

Ptotal = M1
dξ1(t)

dt
+ M2

dξ2(t)

dt
+

∫ l

0
ρ(x)

∂ξ(x, t)

∂t
dx. (42)

From equation (27) or (28), we can rewrite the total linear momentum in the form

Ptotal = (M1 + M2 + m)V0 +
∞∑

n=1

[
M1Xn(0) + M2Xn(�) +

∫ �

0
ρ(x)Xn(x) dx

]
Ṫ (t). (43)

This expression can be rewritten in the form (the dot indicates derivative with respect to the
time)

Ptotal = (M1 + M2 + m)V0 +
∞∑

n=1

〈Xm,X0(x)〉Ṫ ((t). (44)

Since X0 and Xn are orthogonal, we see that only the zero mode contributes to the total linear
momentum

Ptotal = (M1 + M2 + m)V0. (45)

From this result we see that the constant V0 is the velocity of the centre of mass of the system,
as expected.

We now consider the mechanical energy of the system. The kinetic energy of the pointlike
masses is given by

T1 + T2 = 1

2
M1

(
∂u(0, t)

∂t

)2

+
1

2
M2

(
∂u(�, t)

∂t

)2

, (46)

which evidently is not per se a conserved quantity because the pointlike masses exchange
energy with the spring. It follows that in order to have conservation of the mechanical energy,
it is mandatory that any variation of the kinetic energy of the blocks be compensated by a
variation of the energy of the spring, kinetic, potential or both. Keeping this in mind, we
derive (46) with respect to the time to obtain

d

dt
(T1 + T2) = M1

∂u(0, t)

∂t

∂2u(0, t)

∂t2
+ M2

∂u(�, t)

∂t

∂2u(�, t)

∂t2
. (47)
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Combining this result with equations (11) and (12), we can eliminate the masses of the pointlike
bodies and write
d

dt
(T1 + T2) = κ(0)

∂u(0, t)

∂t

[
∂u(0, t)

∂x
− 1

]
− κ(�)

∂u(�, t)

∂t

[
∂u(�, t)

∂x
− 1

]
. (48)

We can recast this equation into a more useful form if we first multiply equation (5) by
∂u(x, t)/∂t to obtain

ρ(x)
∂u(x, t)

∂t

∂2u(x, t)

∂t2
= ∂

∂x

[
κ(x)

(
∂u(x, t)

∂x
− 1

)
∂u(x, t)

∂t

]

− 1

2
κ(x)

∂

∂t

(
∂u(x, t)

∂x
− 1

)2

. (49)

Then, integrating this result over the interval [0, �], we will have

κ(�)

(
∂u(�, t)

∂x
− 1

)
∂u(�, t)

∂t
− κ(0)

∂u(0, t)

∂x

∂u(0, t)

∂t
= d

dt

∫ l

0

1

2
ρ(x)

(
∂u(x, t)

∂t

)2

dx

+
d

dt

∫ l

0

1

2
κ(x)

(
∂u(x, t)

∂x
− 1

)2

. (50)

Substituting this last equation into equation (48), it follows after one more integration that

E = T1 + T2 +
∫ l

0

1

2
ρ(x)

(
∂u(x, t)

∂t

)2

dx +
∫ l

0

1

2
κ(x)

(
∂u(x, t)

∂x
− 1

)2

dx. (51)

This equation expresses the conservation of the total mechanical energy of the system. The
first three terms on the rhs of equation (51) represent the kinetic energy of the pointlike masses
and of the massive spring; the last term represents the potential energy of the spring. We can
rewrite equation (51) in terms of ξ(x, t):

E = T1 + T2 +
∫ �

0

1

2
ρ(x)

(
∂ξ(x, t)

∂t

)2

dx +
∫ �

0

1

2
κ(x)

(
∂ξ(x, t)

∂x

)2

dx, (52)

which turns out to be more useful in some applications.
Proceeding as in the case of the total linear momentum, we can write the total energy in

terms of the general solution. The result is

Etotal = 1

2
(M1 + M2 + m)V 2

0 +
∞∑

n=1

[
M1Xn(0) + M2Xn(�) +

∫ �

0
ρ(x)Xn(x) dx

]
Ṫn(t)

+
∞∑

n,m=1

[
M1Xn(0)Xm(0) + M2Xn(�)Xm(�)

+
∫ �

0
ρ(x)Xn(x)Xm(x) dx

]
Ṫn(t)Ṫm(t)

+
∫ ∞

0
κ(x)

∞∑
n,m=1

X′
n(x)X′

m(x)Tn(t)Tm(t) dx. (53)

The last term representing the potential energy of the spring can be suitably rewritten with the
help of the following identity:∫ �

0
κ(x)X′

n(x)X′
m(x) dx = λn

[
M1Xn(0)Xm(0) + M2Xn(�)Xm(�)

+
∫ �

0
ρ(x)Xn(x)Xm(x) dx

]
, (54)
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which can be easily proved. The final result is

Etotal = 1

2
(M1 + M2 + m)V 2

0 +
∞∑

n=1

[
M1Xn(0) + M2Xn(�) +

∫ �

0
ρ(x)Xn(x) dx

]
Ṫn(t)

+
∞∑

n,m=1

[
M1Xn(0)Xm(0) + M2Xn(�)Xm(�)

+
∫ �

0
ρ(x)Xn(x)Xm(x) dx

]
Ṫn(t)Ṫm(t)

+
∫ ∞

0
κ(x)

∞∑
n,m=1

〈Xn(x)Xm(x)〉Tn(t)Tm(t) dx. (55)

Taking into account the orthonormality relation, we can recast the total energy in a more
illuminating form

Etotal = 1

2
(M1 + M2 + m)V 2

0 +
∞∑

n=1

[
Ṫ 2

n (t) + ω2
nT

2
n

]
(56)

or

Etotal = 1

2
(M1 + M2 + m)V 2

0 +
∞∑

n=1

ω2
n

(
α2

n + β2
n

)
. (57)

This last result shows that the total energy of the system can be decomposed into a sum of
energies, each one associated with a normal mode. Moreover, we can see that in order to
excite two or more frequencies of comparable amplitudes, it is necessary to supply the mode
with the highest frequency with a greater amount of external energy.

6. Solution for ρ(x) = 0

When the spring is massless, the motion of the two pointlike masses is easily obtained by
reducing the two-body problem to the motion of a single effective body about a centre of force
[2]. Here, we try to obtain those solutions by making use of equations (16) and (17).

Firstly, note that taking ρ(x) = 0 does not eliminate the possibility of having eigenvalues
different from zero. It only means that the spatial eigenvalue equation is

d

dx

[
κ(x)

dX(x)

dx

]
= 0, (58)

whose solution is

X(x) = C

∫ x

0

dx ′

κ(x ′)
+ X(0). (59)

The position of a point of the spring is then given by

u(x, t) = x0 + x + V0t +

[
C

∫ x

0

dx ′

κ (x ′)
+ X(0)

]
A cos(ωt + φ). (60)

Defining the usual spring constant Ke by

K−1
e =

∫ �

0

dx

κ(x)
, (61)

with the help of equation (59), we obtain

C = Ke[X(�) − X(0)]. (62)
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Making use of the boundary conditions in the form given by equations (19) and (20), we have

KeX(�) − (Ke − ω2M1)X(0) = 0, (63)

(Ke − ω2M2)X(�) − KeX(0) = 0. (64)

In order to have a non-trivial solution, the determinant associated with this linear system must
be zero, that is

M1M2ω
4 − Ke(M1 + M2)ω

2 = 0. (65)

It follows that the allowed eigenfrequency, as expected, is given by

ω1 =
√

Ke

µ
, (66)

where

µ = M1M2

M2 + M1
(67)

is the reduced mass of the system, mass 1 plus mass 2. This eigenfrequency and the zero-mode
frequency ω0 = 0 are the only allowed frequencies of the system when the spring is massless.
Making use of the equation of our definition of the scalar product, we can easily calculate the
constant C that normalizes the eigenfunction. The result is

C = Ke√
µ

. (68)

7. Solution for κ(x) and ρ(x) uniform

We now turn our attention to an important special case. When the elastic function of the spring
and its density are uniform, it is possible to solve analytically the equation of motion, i.e. the
wave equation that describes the system and clearly interpret the solutions. Defining

v2 = κ/ρ, (69)

and setting λ = ω2 in order to be in accordance with the standard notation, equations (16)
and (17) read

d2T

dt2
+ ω2T = 0, (70)

d2X

dx2
+ q2X = 0, (71)

where

ω = qv. (72)

The boundary conditions, equations (11) and (12) or (19) and (20), applied to this particular
case lead to

M1X(0)q2v2 + κX′(0) = 0, (73)

M2X(�)q2v2 − κX′(�) = 0. (74)
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The general solution for the spatial part is

X(x) = A cos qx + B sin qx. (75)

The allowed eigenvalues are determined by the linear algebraic system

M1qv2A + kB = 0, (76)

(M2qv2 cos q� + κ sin q�)A + (M2qv2 sin q� − κ cos q�)B = 0, (77)

whose characteristic equation is

tan q� = ρq

µq2 − ρ2

M1+M2

. (78)

To illustrate the discussion, let us consider the situation for which the density of the spring
is very small. In this case, the mass of the spring can be neglected. Making the necessary
approximations to equation (78), we obtain

q ≈
√

ρ

µ�
. (79)

The angular frequency is given by equation (72) and in this case it leads to

ω ≈
√

κ

µ�
=

√
Ke

µ
. (80)

As expected, for the case at hand we obtain a non-trivial limit as the mass density tends to
zero. Note that κ/� was identified with the usual elastic constant of the spring. Note also that
the speed of the wave does depend on the density of the spring and tends to infinity as the mass
density tends to zero. It is precisely due to this fact that in this approximation, it is possible to
replace the real forces by forces between the two pointlike masses obeying Newton’s action
and reaction principle discussed in the introduction. To investigate the next order correction to
the angular frequency, we consider for simplicity the case where one of the point masses, say
M1, is infinite and the total mass of the point particles M1 + M2 is also infinite. This situation
corresponds to the case where one of the extremities of the spring is fixed to a wall. Adding
one more term to the expansion of tan q� in (78), we obtain the following quartic equation
for q:

1

3
q4 +

1

�2
q2 − ρ

M2�3
= 0, (81)

whose physical solution for m/M2 	 1 is given by

q =
√

ρ

M2�
− 1

6

√
�ρ3

M3
2

. (82)

Consequently, we will have

ω =
(√

ρ

M2�
− 1

6

√
�ρ3

M3
2

)√
κ

ρ
. (83)

A little bit more of simple algebra allows us to write

ω ≈
√

κ

�
(
M2 + 1

3m
) , (84)

a well-known result, see for example [1, 3].
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Figure 2. The dashed curve is the graphical representation of the rhs of equation (85) for
given m,M1 and M2.
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Figure 3. The curves show the behaviour of the frequency of the first three modes of the system as
a function of the mass of the spring. One of the masses, M1, is infinite, and M2 = 10 mass units.

8. The angular eigenfrequencies

In order to investigate a general solution of equation (78), let us define the variable z = q�

and write the characteristic equation (78) in the form

cot z = µz

m
− m

Mz
, (85)

where M = M1 + M2. In figure 2, we plot the lhs and rhs of equation (85) separately
for representative values of µ,M and m. The solutions of the characteristic equation are
determined by the intersection points. It is easily seen that there is an infinite number of
eigenfrequencies, one in each open interval (nπ, (n + 1)π), where n is a non-negative integer.
The lowest eigenfrequency lies in the interval (0, π). The lowest eigenfrequency is the only
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Figure 4. The curves show the behaviour of the frequency of the first three modes of the system as
a function of the mass of the spring. One of the masses, M1, is infinite, and M2 = 10 mass units.
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Figure 5. The curves show the behaviour of the frequency of the first three modes of the system
as a function of the mass of the spring. The sum of the pointlike masses is finite, M1 + M2 = 10
mass units.

one that remains finite when the mass of the spring tends to zero. All other eigenfrequencies
tend to be infinite, and this means that they are increasingly harder to excite. For n 
 0,
the highest eigenfrequencies can be approximately described by the simple formula zn = nπ .
Then, we can write

ωn ≈ nπ

√
κ

ρ�2
= nπ

√
Ke

m
. (86)

In order to obtain an analytical approximate solution for the eigenfrequencies, we solve
equation (85) for m to obtain

m = 1

2 tan z
(−M ±

√
(M2 + 4(tan2 z)µM))z, (87)
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where the plus sign must be used if x ∈ (nπ, nπ + π/2) and the minus sign if z ∈
(nπ + π/2), (n + 1)π . Now we define w = √

m and make use of the Bürmann–Lagrange
theorem [5] to express the inverse function in the series form. The result is

z = 1√
µ

[
w +

(
− 1

6µ
+

1

2M

)
w3 +

(
11

360µ2
− 1

12µM
− 1

8M2

)
w5 + · · ·

]
. (88)

Consider only the first term of this series. Then, it is easily seen that

q ≈ 1

�

√
m

µ
. (89)

In this case, the angular frequency is

ω0 ≈
√

κ

µ
. (90)

Let us consider the first correction to this result which means to take into account the term in
w3 in the inverted series. Then, it follows that

q ≈ 1

�

√
m

µ

[
1 +

(
− 1

6µ
+

1

2M

)
m

]
. (91)

The angular frequency is then

ω0 ≈
√

κ

µ

[(
1 − 1

6µ
+

1

2M

)
m

]
. (92)

We can also express the other eigenfrequencies (n > 0) in a series form by again using the
Bürmann–Lagrange theorem. The result up to the fourth power in the mass of the spring is

ωn = nπ

√
Ke

m�

[
1 +

m

µn2π2
− m2

µ2n3π3
+

(
2

µ3n6π6
− 1

3µ3n4π4
+

1

µ2n4π4M

)
m3

+

(
− 5

µ4n8π8
+

4

3µ4n6π6M
− 4

µ3n6π6M

)
m4

]
. (93)

Figures 3–5 show the behaviour of the first three lowest eigenfrequencies as a function of the
mass of the spring m for a particular choice of the sum of the pointlike masses M1 + M2. In
figures 3 and 4, one of the masses is infinite and the other is finite. This means that one of
the ends of the spring is coupled to a fixed wall. In figure 5 both pointlike masses are finite.
As physically expected, when the mass of the spring goes to zero the higher modes become
harder and harder to excite and the fundamental mode tends to a fixed value.

9. Concluding remarks

In this paper we discussed the classical mechanics of a spring of finite mass coupled to two
arbitrary pointlike masses fixed at its ends. A general approach to the problem was attempted
and some general results such as the conservation of linear momentum and energy were
obtained. We have also shown that the physical problem leads to an example of a Sturm–
Liouville system. The detailed study of this problem is heavily dependent on the explicit
knowledge of the elastic function κ(x). The special case for which the elastic function and the
mass density are uniform was discussed, and an approximation procedure to the evaluation of
the normal frequencies was put forward and tested. In the limiting case of a massless spring,
we have focused our attention on the motion of the fixed masses M1 and M2 and considered
the spring as a way of transmitting the interaction between them. With respect to the wave
motion of the spring, we observe that the result

√
Ke/ρ is the velocity of the wave only if the
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velocity of the centre of mass of the system is zero. If this velocity is V with respect to some
suitable reference frame then, according to the Galilean rule, the velocity of pulse propagation
will be V = √

Ke/ρ.
At the moment, the study of possible equivalence between motion in a single mode of the

massive spring and simple harmonic motion and possible quantization of the system is under
way.
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