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Abstract
We evaluate the electrostatic potential and the electrostatic field created by a
point charge and an arbitrarily oriented electrical dipole placed near a grounded
perfectly conducting sphere. Induced surface charge distributions and possible
variants of the problem are also discussed.

1. Introduction

Several methods have been devised in order to solve electrostatic problems. Among them, the
image method stands out due to its relative simplicity and strong physical appeal. Essentially,
the image method leans on the uniqueness theorems of electrostatics which allow us, for
instance, to replace a given conductor by a system of charges capable of reproducing the
boundary conditions on the surface of the conductor. This replacement must be done outside
the physical region so that the Poisson equation remains unchanged. It can be shown that it is
always possible to obtain the set of auxiliary charges necessary to solve the given electrostatic
boundary problem [1]. The classical example of the application of this method is the problem
of a point charge at a distance D from a grounded perfectly conducting infinite plate . In this
case, the image is another point charge with reversed algebraic sign at a distance D below the
mirror surface (the conducting plane). The electrostatic potential, and therefore the electric
field, in the physical region is the sum of the potentials of the point charge and its image. From
knowledge of the potential we can also calculate the distribution of the electric charge induced
on the plane. A more challenging problem is that of the point charge between two grounded
conducting planes. The number of images in this case is infinite and they are distributed
exactly as the specular images of a pointlike light source placed between two parallel plane
mirrors. For these two examples, the image method fully deserves its name. Note, however,
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that for most electrostatic boundary problems the images do not correspond to those obtained
in the framework of geometrical optics. For example, in the problem of a point charge in
the presence of a grounded perfectly conducting sphere, also a well-known example of an
electrostatic problem, the latter does not work as a mirror. Of course, this does not diminish
the physical appeal of the method.

In this paper we rediscuss and solve in detail another example of the collection of problems
that can be solved by the image method: the determination of the electric field of an ideal
static dipole with an arbitrary spatial orientation in the presence of a grounded conducting
sphere. A somewhat different version of this problem is proposed in Batygin and Topygin’s
problem book on electrodynamics [2] where the student is asked to determine the system of
images which is equivalent to the induced charges, the interaction energy between the dipole
and the sphere, and the force and torque on the dipole. Only the answers are provided by
the authors. The determination of the electrostatic potential field of a grounded sphere and
an electric dipole for the particular case where the dipole is collinear with the radius vector
of the sphere was proposed in [3] and a briefly sketched solution for the potential was also
offered. To the electrical dipole pointing to an arbitrary spatial direction we also add a point
charge. This configuration is sufficiently general as to allow the consideration of several
special situations that can be compared with known results. As mentioned above, our aim
here will be the enlargement of the previous discussions mentioned above and in what follows,
we will employ the image method to obtain the potential, the electric field and the induced
surface charge on the conduction sphere. We will also reobtain the electrostatic energy of the
system as well as the force and torque on the dipole. We believe that a complete discussion
of this electrostatic problem can be useful for undergraduate and graduate students as well as
for their instructors. Variants of the problem can also be proposed and we will discuss some
of these variants. SI units will be used.

2. The electrostatic problem and its solution

Let us begin by enunciating more precisely the problem we initially want to solve: given a
point charge q and an arbitrarily oriented ideal dipole p, both placed at the same point of the
space and at known distance from a grounded, perfectly conducting sphere of radius R, the
centre of which coincides with the origin of the coordinate system, find the electric potential
and field at a point P in the region exterior to the sphere, and find also the induced surface
charge density σe on the conducting sphere.

In order to solve this problem, it is convenient to start by recalling that for a point charge
placed at a distance R1 from the centre of the sphere an image charge is formed at a distance
R2 on the line joining the centre of the sphere to the original point charge. These distances
satisfy the geometrical relation

R1R2 = R2. (1)

It seems natural then to place the image dipole at the same point below the spherical surface
where the image charge is located. With the convention that the indices 1 and 2 denote the
real sources and their images, respectively, the electrostatic potential at a point P exterior to
the sphere is tentatively written as

V (P ) = p1 · r1

4πε0r
3
1

+
p2 · r2

4πε0r
3
2

+
q1

4πε0r1
+

q2

4πε0r2
, (2)

where r1 and r2 are position vectors linking the sources and their images to the observation
point P, respectively; see figure 1. The relevant boundary condition is given by

V (M) = 0, (3)
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where M denotes an arbitrary point on the surface of the conductor. Therefore, on the surface
of the conductor we write

p1 · r1

r3
1

+
p2 · r2

r3
2

+
q1

r1
+

q2

r2
= 0. (4)

Now we define new variables according to

R = r1 + R1, (5)

and

R = r2 + R2, (6)

where R is the radius vector linking the origin to a point on the spherical surface and r1 and
r2 are now vectors linking the dipole and its image to this same point on the spherical surface.
As in the problem of a point charge in the presence of a conducting sphere, for points on the
spherical surface the geometrical relation

r1

r2
= k, (7)

where ri ≡ ‖ri‖, and k is a constant, holds, and we can rewrite equation (4) as
[p1

k3
+ p2 − 2

(q1

k
+ q2

)
R2

]
· R − p1 · R1

k3
− p2 · R2 +

(q1

k
+ q2

) (
R2 + R2

2

) = 0, (8)

where we have also made use of equations (5) and (6). Since this relation holds for an arbitrary
point on the conducting surface, i.e., for arbitrary R, we must have

p1

k3
+ p2 − 2

(q1

k
+ q2

)
R2 = 0, (9)

and
p1 · R1

k3
+ p2 · R2 −

(q1

k
+ q2

) (
R2 + R2

2

) = 0. (10)

We can solve this system for the unknown quantities q2 and p2 as functions of the known
sources q1 and p1 in a quick way by taking the dot product of the first equation with R2. From
the result we subtract the second equation to obtain

p1 · (R2 − R1)

k3
+

(q1

k
+ q2

) (
R2 − R2

2

) = 0, (11)

or, solving for q2

q2 = −p1 · (R2 − R1)

k3
(
R2 − R2

2

) − q1

k
. (12)

Making use of the geometrical relation given by equation (1) (keep in mind that we are working
on the surface of the sphere) and noting that R1 = R1R̂1 and R2 = R2R̂1, where R̂1 is a fixed
unit radial vector along the direction of R1, we can write equation (12) as

q2 = p1 · R1

k3R2
− q1

k
. (13)

On the other hand, we can take advantage of the fact that R is arbitrary and choose it in such
a way that R becomes parallel to R1 and R2 so that k can be easily calculated

k = R1 − R

R − R2
= R1

R
, (14)

where we have made use of equation (1). Then taking this result into equation (13) we finally
obtain for the image point charge the result

q2 = Rp1 · R1

R3
1

− R

R1
q1. (15)
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Figure 1. Geometry for the problem of a dipole and a point charge in the presence of a perfectly
conducting sphere. The dipole has an arbitrary orientation in three-dimensional space.

Equation (15) fixes the image charge q2 completely. Remark that for the particular
configuration where the dipole is perpendicular to its position vector relative to the centre
of the sphere, R1, or when p1 = 0, the image charge is that of the problem of the grounded
sphere and a point charge [1].

Taking equation (15) into equation (9), writing R2 = R2R̂1 and making use again of
equation (1) to eliminate R2 we obtain

p2 = −R3

R3
1

[p1 − 2(p1 · R̂1)R̂1]. (16)

Equation (16) fixes the direction and magnitude of the image dipole p2 completely. By making
use of the relation a × (b × c) = (a · c) b − (a · b) c, we can also write

p2 = R3

R3
1

[p1 + 2(p1 × R̂1) × R̂1]. (17)

The second term on the lhs of equation (17) determines the transverse component of the image
dipole with respect to the position vector R1 of the real dipole.

From equation (16) we can easily show that the magnitude of the dipole and that of its
image are related by

‖p2‖ = R3

R3
1

‖p1‖. (18)

Moreover, since

p2 · R̂1 = R3

R3
1

p1 · R̂1, (19)

it is also easily seen that the angle between the direction determined by R1 and the image
dipole is the same as angle between this same direction and the real dipole. Therefore, the
radial projection of the image dipole and that of the real dipole is positive and adds up; see
figure 2.

Taking equations (15) and (16) into equation (2) and recalling that r = r1 + R1 = r2 + R2,
we obtain for the electrostatic potential at an observation point P(r) not on the surface of the
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Figure 2. The angle between R1 and the image dipole is the same as angle between R1 and the
real dipole. The magnitude of the image dipole is reduced by the factor R3/R3

1 with respect to the
magnitude of the real dipole.

sphere the expression

4πε0V (r) = p1 · (r − R1)

‖r − R1‖3
− R3

R3
1

[p1 − 2(p1 · R̂1)R̂1] · (
r − R2

R1
R̂1

)
∥∥r − R2

R1
R̂1

∥∥3

+
R

R3
1

p1 · R1∥∥r − R2

R1
R̂1

∥∥ − R

R1

q1∥∥r − R2

R1
R̂1

∥∥ +
q1

‖r − R1‖ . (20)

The electric field is minus the gradient of this expression and a straightforward calculation
yields

4πε0E(r) = − p1

‖r − R1‖3
+

3p1 · (r − R1)(r − R1)

‖r − R1‖5
+

R3

R3
1

[p1 − 2(p1 · R̂1)R̂1]∥∥r − R2

R1
R̂1

∥∥3

− 3
R3

R3
1

[p1 − 2(p1 · R̂1)R̂1] · (
r − R2

R1
R̂1

)(
r − R2

R1
R̂1

)
∥∥r − R2

R1
R̂1

∥∥5
+

R

R3
1

p1 · R1
(
r − R2

R1
R̂1

)
∥∥r − R2

R1
R̂1

∥∥3

− Rq1
(
r − R2

R1
R̂1

)

R1

∥∥r − R2

R1
R̂1

∥∥3 +
q1(r − R1)

‖r − R1‖3
. (21)

A simple calculation—it suffices to consider only terms proportional to r—shows that the
electric field on the surface of the sphere, r = R, is given by

4πε0E(R) = 3

R3

p1 · (
r̂ − R1

R
R̂1

)
R̂∥∥r̂ − R1

R
R̂1

∥∥5
− 3

R3
1

[p1 − 2(p1 · r̂1)R̂1] · (
r̂ − R

R1
R̂1

)
R̂

∥∥r̂ − R
R1

R̂1

∥∥5

+
1

R2
1R

(p1 · R̂1)R̂∥∥r̂ − R
R1

r̂1

∥∥3 − q1

R1R

R̂∥∥R̂ − R
R1

R̂1

∥∥3 +
q1

R2

R̂∥∥R̂ − R1
R

R̂1

∥∥3 . (22)



864 F C Santos and A C Tort

The induced superficial charge density on the sphere is given by σ = ε0R̂ · E (R), therefore
the general expression for the induced charge density is up to the constant ε0, the expression
above with the unit radial vector R̂ omitted.

3. The electric dipole in the presence of a grounded conducting sphere

Let us consider the special configuration formed by the electric dipole pointing at an arbitrary
direction and a grounded conducting sphere [2, 3]. To obtain the corresponding electrostatic
potential, the electric field and the induced charge on the sphere we set q1 = 0 in the previous
equations. Note that in this case, for an arbitrary direction, besides the image dipole p2, we
have also, as remarked before, an image charge q2 which depends on the relative orientation
between p1 and R1. Only if p1 and R1 are mutually perpendicular will the image point charge
be zero and the image dipole scaled down by the factor R3

/
R3

1 and its direction opposite to
that of the real dipole.

In order to evaluate the electrostatic energy stored in this configuration we must
renormalize the electric field. This means to subtract from the total electric field as given
by equation (21) the contribution of the real dipole, i.e., the first two terms on the lhs of
equation (21). Then the electrostatic energy can be calculated from the formula

U = − 1
2 p1 · Eren(R1), (23)

where Eren(R1) is given by

4πε0Eren(R1) = R3

R3
1

[p1 − 2(p1 · R̂1)R̂1]∥∥R − R2

R1
R̂1

∥∥3

− 3
R3

R3
1

[p1 − 2(p1 · R̂1)R̂1] · (
R − R2

R1
R̂1

) · (
R − R2

R1
R̂1

)
∥∥R − R2

R1
R̂1

∥∥5

+
R

R3
1

p1 · R1
(
R1 − R2

R1
R̂1

)
∥∥R1 − R2

R1
R̂1

∥∥3 . (24)

A straightforward calculation yields for the electrostatic energy of the configuration the formula

U = −1

2

R
[
R2

1(p1 · R̂1)
2 + R2p2

1

]

4πε0
(
R2

1 − R2
)3 (25)

which is in perfect agreement with [2]1.
The force on the real dipole can be calculated by taking the gradient of the electrostatic

energy

F1 = −∇U = − dU

dR1
R̂1. (26)

The result is

F1 = − RR1

4πε0
(
R2

1 − R2
)4

[(
2R2

1 + R2)(p1 · R̂1)
2 + 3R2p2

1

]
R̂1, (27)

also in agreement with [2].

1 In order to compare our results with those of [2] we must set R1 = R1ẑ, p1 = ‖p1‖(sin αx̂ + cos αẑ), where α is
the angle between R1 and p1. Then it is readily seen that both results agree. The same holds for the induced image
charge q2.
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Figure 3. Dimensionless surface charge density σ�(R) of the grounded sphere in the configuration
of [2] as a function of the angle θ for α = 0. The black circle on the surface of the sphere
corresponds to φ = 0, and φ = π , and R1 = 2R. The white curves on the sphere correspond
to constant charge density curves. Note that the north and the south poles correspond to maxima.
This happens only for small values of α.

To evaluate the torque on the real dipole we must consider the derivative of the electrostatic
energy with respect to the angle between p1 and the unit vector R̂1. If we denote this angle by
α then

τ = −∂U

∂α
= −RR2

1

2

‖p1‖2 sin(2α)

4πε0
(
R2

1 − R2
)3 , (28)

in agreement with [2].
The induced superficial charge distribution on the conducting sphere is

σ(R) = 3

4πR3

p1 · (
R̂ − R1

R
R̂1

)
∥∥R̂ − R1

R
R̂1

∥∥5
− 3

4πR3
1

[p1 − 2(p1 · R̂1)R̂1] · (
R̂ − R

R1
R̂1

)
∥∥R̂ − R

R1
R̂1

∥∥5

+
1

4πR2
1R

(p1 · R̂1)∥∥R̂ − R
R1

R̂1

∥∥3 . (29)

In order to visualize in an easier way the induced charge density we choose the configuration
of [2]

p1 = ‖p1‖(sin αx̂ + cos αẑ) (30)
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Figure 4. Dimensionless surface charge density σ� (R) of the grounded sphere in the configuration
of [2] as a function of the angle θ for α = π/4. The black circle on the surface of the sphere
corresponds to φ = 0 and φ = π , and R1 = 2R. The white curves on the sphere correspond to
constant charge density curves.

where α is the angle between R1 and p1. Also R1 = R1ẑ. Then from equation (29) the surface
charge density can be cast into the expression

σ ∗(R) = [x̂ · R̂ sin α + (ẑ · R̂ − B−1) cos α]

(1 + B−2 − 2B−1ẑ · R̂)5/2
− B3 [x̂ · R̂ sin α − (ẑ · R̂ − B) cos α]

(1 + B2 − 2B ẑ · R̂)5/2

+
B2

3

cos α

(1 + B2 − 2B ẑ · R̂)3/2
, (31)

where we have defined σ ∗ (R) := 4πR3σ (R) /3‖p1‖, and B := R/R1; also x̂ · R̂ =
sin θ cos φ, and ẑ · R̂ = cos θ . The angles θ and φ are the usual polar and azimuthal angles
associated with spherical coordinates. Note that 0 � B � 1. Also, for R1 � R we have
B → 0 and σ ∗ (R) → 0, as it should. Equation (31) will allow for simple plots of the
dimensionless surface charge distribution σ ∗ (R) as a function of the polar angle once we
have chosen α and φ. However, in order to construct more illuminating plots it helps to know
where, for a fixed α, the local maxima and minima of equation (31) are located. These points
can be easily obtained by setting ∂σ �/∂φ = 0 and ∂σ �/∂θ = 0. It turns out that the first
condition leads to φ = 0 and φ = π . This means that local maxima and minima are located
on a circle (i.e., a meridian) traced on the surface of the sphere and contained in a plane that
contains the real dipole and the origin, the XZ-plane. With this understanding and the help
of computer calculation software we construct plots as depicted in figures 3, 4 and 5. These
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Figure 5. Dimensionless surface charge density σ� (R) of the grounded sphere in the configuration
of [2] as a function of the angle θ for α = π/2. The black circle on the surface of the sphere
corresponds to φ = 0 and φ = π , and R1 = 2R. The white curves on the sphere correspond to
constant charge density curves.

figures display the dimensionless induced charge distribution on the sphere for α = 0, α = π/4
and α = π/2. In all situations R1 = 2R. Note that θ now means the coordinate that
parametrizes the circle in such a way that the angular spherical coordinates of its points are
(θ, 0) for 0 < θ < π and (2π − θ, π) for −π < θ < 0. Furthermore, for convenience we have
constructed these plots for the closed interval [−π/2, 3π/2] making the usual identification
θ → θ − 2π .

4. Final remarks

From the general solutions that we have found we can answer a number of particular questions,
for example, we now can readily answer the question [4]: a point dipole of moment p is a
distance d from the centre of a grounded conducting sphere and points to the centre of it. What
is the charge distribution on the sphere? Or we can answer the question: does it matter if the
sphere is isolated or grounded [5]? For the grounded sphere the total charge is not specified
and the amount of charge on it will depend on the details of the configuration. For an isolated
charged sphere the total charge Q has a fixed value and the potential on the surface of the
sphere has a value V0. In this case, an additional point charge q3 placed at the centre of the
sphere will solve the problem. If the sphere is isolated but neutral, the condition q3 + q2 = 0
must hold.
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