Da torre de Babel a elevadores espaciais e satélites vínculados

Teresa J. Stuchi, IF-UFRJ

IF-Junho/2015

Space elevators

\author{

1. Torre de Babel
 (Moises, Genesis (11:1-9)
}

2. Escada de Jacob (Genesis (28:12))

Space elevators

3. K.E.Tsiolkovskì

Speculation about Earth and Sky and on Vesta (1895)
4. Yuri Artsutanov (1960) Komosomolskaya Pravda
5. Arthur C. Clarke The fountains of Paradise (tower in Sri Lanka)

Yuri Artsutanov and Jerome Pearson

Space Elevator

K.E.Tsiolkovskì

35.800 km,
gravitational accerleration, g

GEO: órbita geoestacionária

$$
\begin{aligned}
& g=G M / r^{2} \\
& a=\omega^{2} r \\
& g-a=G M / r^{2}-\omega^{2} r=0 \\
& r=\left(G M / \omega^{2}\right)^{1 / 3}=R+h
\end{aligned}
$$

Altitude, $\mathrm{h}=22,236$ miles

AS THE CAR CLIMBS, THE ELEVATOR TAKES ON A 1 DEGREE LEAN, DUE TO THE TOP OF THE ELEVATOR TRAVELING FASTER THAN THE BOTTOM AROUND THE EARTH (CORIOLIS FORCE). THIS DIAGRAM IS NOT TO SCALE.

VARIAÇÃO DA VELOCIDADE COM A ALTITUDE

The velocity at the top of the tower is so great ($10.93 \mathrm{~km} / \mathrm{s}$) that a payload released from there would escape the Earth without rocket propulsion.

Elewator Enc

GEO

Zaxth

cUSTO

TRANSPORTI DE CARCAS PARA (a) ESPAGO

- ATMARMIENTIB

- FOTMROA

The Space Elevator will succeed 50 years after everyone has stopped laughing.
-Arthur C. Clarke

NANO TUBOS DERAM VIDA NOVA AO SONHO DA BABEL

Lagrangian Points Earth-Moon

LUNAR SPACE ELEVATOR

There are two lunar-synchronous points where an elevator could be placed that would be stable: the libration points L_{1} and L_{2}

Anchored Lunar Satellites Compared to the Anchored Earth Satellite (Jerome Pearson)

LENGTH, LUNAR DISTANCE UNITS/THOUSANDS OF kM

YES2 (2007) - ESA

TSS-1 (1992) - NASA

Tether mudando a órbita de satélite

Tether tosses payload to higher orbit

Orbit
After

- Momentum-exchange tethers
(nonconductive tethers representing passive propulsion).

They allow momentum to be transferred between objects in space, such as two spacecraft (tethers may redistribute momentum of a system from one body to another, but overall momentum is always conserved). The principle is based on the gravity gradient force.

Two objects, separated by a distance but tied together by a tether, are "pulled" apart by the gravity gradient force [this causes vertical (radial) alignment between the two objects]. Due to irregularities in the central body's gravitational field, the nearly radially aligned tether system actually librates, or oscillates, in a pendulum-like motion, about the system's center of mass. This swinging motion may be used to raise or lower the orbit of a tandem system without using any propellant.

TIPS

- A bolo tether rotates end-over-end in the orbit plane. This system could propel a payload attached to one end into a different orbit. The bolo could conceivably catch a payload.
- A stationary tether refers to two endbodies connected by a tether of constant length. The system may be used to drag the lower end-body payload through the higher atmosphere (for sampling) and simultaneously lowering the system's orbit.
- A tethered system release of an endbody from the remaining end-body and tether causes a momentum gain for the released end-body, resulting in a higher orbit for the released end-body orbit and a lower orbit for the remaining end-body and tether.

Summaryy a tether at [2

- The analytical model for the dynamics of
a tether in the vicinity of collinear points
- Determination of the equilibrium points
- Lyapunov periodic orbits in the vicinity of the equilibrium points

Application to the Earth-Moon L2

Modelling the tether

- Primary bodies as point masses on circular orbits around the CM
- Cable length much smaller than the distance between the primary bodies
- Planar motion
- Ideal rigid cable

System description

- Synodic system with origin in L2 of the RTBP
- Equations of Euler-Lagrange
$\begin{gathered}\text { generalized coordinates : } \\ \text { (holonomic constraints) }\end{gathered} \quad x, y, \theta$

$$
L(q, \dot{q})=T(q, \dot{q})-V(q)
$$

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}=0
$$

Kinetic energy as a function of the generalized coordinates

$$
T=\frac{1}{2}\left(m_{1}+m_{2}\right)\{\underbrace{\dot{x}^{2}+\dot{y}^{2}}_{\text {(quadratic) }} \underbrace{-2 n \dot{x}\left(Y_{o}+y\right)+2 n \dot{y}\left(X_{o}+x\right)}_{\text {(Coriolis) }}+
$$

$$
+n^{2}\left[\left(X_{o}+x\right)^{2}+\left(Y_{o}+y\right)^{2}\right]+
$$

(centrifugal)

$$
+\underbrace{\beta_{1} \beta_{2}\left[(n+\dot{\theta})^{2} l^{2}+\dot{l}^{2}\right]}_{\text {(rotation/constrain) }}\}
$$

Potential energy - V

$$
d_{1}+d_{2}=l
$$

$$
\frac{1}{\left|\vec{R}_{1}-d_{1} \vec{t}\right|}=\frac{1}{R_{1}}\left\{1+\frac{d_{1}}{R_{1}}\left(\vec{u}_{1} \cdot \vec{t}\right)+\left(\frac{d_{1}}{R_{1}}\right)^{2} \cdot \frac{1}{2}\left(3\left(\vec{u}_{1} . \vec{t}\right)^{2}-1\right)+\left(\frac{d_{1}}{R_{1}}\right)^{3} \cdot \frac{1}{2}\left[5\left(\vec{u}_{1} \cdot \vec{t}\right)^{3}-3\left(\vec{u}_{1} \cdot \vec{t}\right)\right]+\right.
$$

$$
V=-\frac{G M_{1} m_{1}}{\left|\vec{R}_{1}-d_{1} \vec{t}\right|}-\frac{G M_{2} m_{1}}{\left|\vec{R}_{2}-d_{1} \vec{t}\right|}-\frac{G M_{1} m_{2}}{\left|\vec{R}_{1}+d_{2} \vec{t}\right|}-\frac{G M_{2} m_{2}}{\left|R_{2}+d_{2} \vec{t}\right|}-\frac{G M_{1} M_{2}}{D}-\frac{G m_{1} m_{2}}{l}
$$

Lagrangian function

$$
\begin{aligned}
& L=\frac{1}{2}\left(m_{1}+m_{2}\right)\left\{\dot{x}^{2}+\dot{y}^{2}-2 n \dot{x}\left(Y_{o}+y\right)+2 n \dot{y}\left(X_{o}+x\right)+n^{2}\left[\left(X_{o}+x\right)^{2}+\left(Y_{o}+y\right)^{2}\right]+\right. \\
& \left.\beta_{1} \beta_{2}\left[(n+\dot{\theta})^{2} l^{2}+\dot{l}^{2}\right]\right\}+ \\
& G\left(m_{1}+m_{2}\right)\left\{M _ { 1 } \left[\frac{1}{\left[\left(X_{0}+D_{1}+x\right)^{2}+y^{2}\right]^{1 / 2}}+\frac{1}{2} \frac{\beta_{1} \beta_{2} l^{2}\left(3 \cos ^{2} \theta-1\right)}{\left[\left(X_{0}+D_{1}+x\right)^{2}+y^{2}\right]^{3 / 2}}+\right.\right. \\
& \left.\frac{1}{2} \frac{\beta_{1} \beta_{2}\left(\beta_{2}-\beta_{1}\right) l^{3}\left(5 \cos ^{3} \theta-3 \cos \theta\right)}{\left[\left(X_{0}+D_{1}+x\right)^{2}+y^{2}\right]^{2}}+\frac{1}{8} \frac{\beta_{1} \beta_{2}\left(1-3 \beta_{1} \beta_{2}\right) l^{4}\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right)}{\left[\left(X_{0}+D_{1}+x\right)^{2}+y^{2}\right]^{5 / 2}}\right\} \\
& M_{2}\left[\frac{1}{\left[\left(X_{0}-D_{2}+x\right)^{2}+y^{2}\right]^{1 / 2}}+\frac{1}{2} \frac{\beta_{1} \beta_{2} l^{2}\left(3 \cos ^{2} \theta-1\right)}{\left[\left(X_{0}-D_{2}+x\right)^{2}+y^{2}\right]^{3 / 2}}+\right. \\
& \frac{1}{2} \frac{\beta_{1} \beta_{2}\left(\beta_{2}-\beta_{1}\right) l^{3}\left(5 \cos ^{3} \theta-3 \cos \theta\right)}{\left[\left(X_{0}-D_{2}+x\right)^{2}+y^{2}\right]^{2}}+\frac{1}{8} \frac{\beta_{1} \beta_{2}\left(1-3 \beta_{1} \beta_{2}\right) l^{4}\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right)}{\left[\left(X_{0}-D_{2}+x\right)^{2}+y^{2}\right]^{5 / 2}}
\end{aligned}
$$

Expansion up to fourth order

Equations of motion

dimensionless coordinates : $\quad \hat{x}=x / D \quad \hat{y}=y / D \quad \hat{l}=l / D \quad \tau=n t$

$$
\left\{\begin{array}{l}
\hat{x}^{\prime \prime}=+2 \hat{y}^{\prime}-\left(\frac{1-\mu}{\hat{R}_{1}^{3}} \Lambda_{1}^{l, \theta}+\frac{\mu}{\hat{R}_{2}^{3}} \Lambda_{2}^{l, \theta}-1\right)\left(\hat{X}_{0}+\hat{x}\right)-\mu(1-\mu)\left(\frac{\Lambda_{1}^{l, \theta}}{\hat{R}_{1}^{3}}-\frac{\Lambda_{2}^{l, \theta}}{\hat{R}_{2}^{3}}\right) \\
\hat{y}^{\prime \prime}=-2 \hat{x}^{\prime}-\left(\frac{1-\mu}{\hat{R}_{1}^{3}} \Lambda_{1}^{l, \theta}+\frac{\mu}{\hat{R}_{2}^{3}} \Lambda_{2}^{l, \theta}-1\right) \hat{y} \\
\boldsymbol{\theta}^{\prime \prime}=-2\left(\frac{\hat{l}^{\prime}}{\hat{l}}\right)\left(\theta^{\prime}+1\right)-\frac{1-\mu}{\hat{R}_{1}^{3}} \Omega_{1}^{l, \theta}-\frac{\mu}{R_{2}^{3}} \Omega_{2}^{l, \theta} \quad, \text { where: }
\end{array}\right.
$$

$$
\Lambda_{i}^{l, \theta}=1+\frac{3}{2} \beta_{1} \beta_{2}\left(\frac{l}{R_{1}}\right)^{2}\left(3 \cos ^{2} \theta-1\right)+2 \beta_{1} \beta_{2}\left(\beta_{2}-\beta_{1}\right)\left(\frac{l}{R_{1}}\right)^{3}\left(5 \cos ^{3} \theta-3 \cos \theta\right)+
$$

$$
\frac{5}{8} \beta_{1} \beta_{2}\left(1-3 \beta_{1} \beta_{2}\right)\left(\frac{l}{R_{1}}\right)^{4}\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right)
$$

$$
\Omega_{i}^{l, \theta}=\frac{3}{2} \operatorname{sen}(2 \theta)-\frac{3}{2}\left(\beta_{2}-\beta_{1}\right)\left(\frac{l}{R_{i}}\right)\left(1-5 \cos ^{2} \theta\right) \operatorname{sen} \theta-\frac{5}{2}\left(1-3 \beta_{1} \beta_{2}\right)\left(\frac{l}{R_{i}}\right)^{2}\left(3-7 \cos ^{2} \theta\right) \cos \theta \operatorname{sen} \theta
$$

Constant of motion

$$
E=\sum_{i=1}^{n} \dot{q}_{i} \frac{\partial L}{\partial \dot{q}_{i}}-L \quad \text { (Jacobian constant) }
$$

$$
E^{*}=2 \Omega-\left(\hat{x}^{\prime 2}+\hat{y}^{\prime 2}\right)-\beta_{1} \beta_{2}\left[\left(\theta^{\prime 2}-1\right) \hat{l}^{2}-\hat{l}^{\prime 2}\right], \text { where: }
$$

$$
\Omega=\frac{\left(\hat{X}_{0}+\hat{x}\right)^{2}}{2}+\frac{\hat{y}^{2}}{2}+\frac{1-\mu}{\hat{R}_{1}} \Sigma_{1}+\frac{\mu}{\hat{R}_{2}} \Sigma_{2}
$$

$$
\Sigma_{i}=1+\frac{1}{2} \beta_{1} \beta_{2}\left(\frac{l}{R_{i}}\right)^{2}\left(3 \cos ^{2} \theta-1\right)+\frac{1}{2} \beta_{1} \beta_{2}\left(\beta_{2}-\beta_{1}\right)\left(\frac{l}{R_{i}}\right)^{3}\left(5 \cos ^{3} \theta-3 \cos \theta\right)+
$$

$$
\frac{1}{8} \beta_{1} \beta_{2}\left(1-3 \beta_{1} \beta_{2}\right)\left(\frac{l}{R_{i}}\right)^{4}\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right)
$$

If $\quad l=0 \Longrightarrow$ RTBP

Equations of motion

$$
\Lambda_{1}^{0,0}=\Lambda_{2}^{0,0}=1 \quad\left\{\begin{array}{l}
\hat{X}^{\prime \prime}=+2 \hat{Y}^{\prime}-\left(\frac{1-\mu}{\hat{R}_{1}^{3}}+\frac{\mu}{\hat{R}_{2}^{3}}-1\right) \hat{X}-\mu(1-\mu)\left(\frac{1}{\hat{R}_{1}^{3}}-\frac{1}{\hat{R}_{2}^{3}}\right) \\
\hat{Y}^{\prime \prime}=-2 \hat{X}^{\prime}-\left(\frac{1-\mu}{\hat{R}_{1}^{3}}+\frac{\mu}{\hat{R}_{2}^{3}}-1\right) \hat{y}
\end{array}\right.
$$

Jacobian constant

$$
\begin{array}{r}
\Sigma_{1}=\Sigma_{2}=1 \longleftrightarrow E^{*}=C_{J}=2 \Omega-\left(\hat{X}^{\prime 2}+\hat{Y}^{\prime 2}\right) \\
\Omega=\frac{\hat{X}^{2}}{2}+\frac{\hat{Y}^{2}}{2}+\frac{1-\mu}{\hat{R}_{1}}+\frac{\mu}{\hat{R}_{2}}
\end{array}
$$

$$
X_{0}+x \leftrightarrow X
$$

Equilibrium equations

Left hand side equals zero and all velocities equal zero

$$
\begin{aligned}
& \hat{x}^{\prime \prime}=+2 \hat{y}^{\prime}-\left(\frac{1-\mu}{\hat{R}_{1}^{3}} \Lambda_{1}^{l, \theta}+\frac{\mu}{\hat{R}_{2}^{3}} \Lambda_{2}^{l, \theta}-1\right)\left(\hat{X}_{0}+\hat{x}\right)-\mu(1-\mu)\left(\frac{\Lambda_{1}^{l, \theta}}{\hat{R}_{1}^{3}}-\frac{\Lambda_{2}^{l, \theta}}{\hat{R}_{2}^{3}}\right) \\
& \hat{y}^{\prime \prime}=-2 \hat{x}^{\prime}-\left(\frac{1-\mu}{\hat{R}_{1}^{3}} \Lambda_{1}^{l, \theta}+\frac{\mu}{\hat{R}_{2}^{3}},_{2}^{l, \theta}-1\right) \hat{y} \\
& \theta^{\prime \prime}=-2\left(\frac{\hat{l}^{\prime}}{\hat{l}}\right)\left(\theta^{\prime}+1\right)-\frac{1-\mu}{\hat{R}_{1}^{3}} \Omega_{1}^{l, \theta}-\frac{\mu}{R_{2}^{3}} \Omega_{2}^{l, \theta} \quad, \text { where: }
\end{aligned}
$$

$$
\Lambda_{i}^{l, \theta}=1+\frac{3}{2} \beta_{1} \beta_{2}\left(\frac{l}{R_{1}}\right)^{2}\left(3 \cos ^{2} \theta-1\right)+2 \beta_{1} \beta_{2}\left(\beta_{2}-\beta_{1}\right)\left(\frac{l}{R_{1}}\right)^{3}\left(5 \cos ^{3} \theta-3 \cos \theta\right)+
$$

$$
\frac{5}{8} \beta_{1} \beta_{2}\left(1-3 \beta_{1} \beta_{2}\right)\left(\frac{l}{R_{1}}\right)^{4}\left(35 \cos ^{4} \theta-30 \cos ^{2} \theta+3\right)
$$

$$
\Omega_{i}^{l, \theta}=\frac{3}{2} \operatorname{sen}(2 \theta)-\frac{3}{2}\left(\beta_{2}-\beta_{1}\right)\left(\frac{l}{R_{i}}\right)\left(1-5 \cos ^{2} \theta\right) \operatorname{sen} \theta-\frac{5}{2}\left(1-3 \beta_{1} \beta_{2}\right)\left(\frac{l}{R_{i}}\right)^{2}\left(3-7 \cos ^{2} \theta\right) \cos \theta \operatorname{sen} \theta
$$

Equilibrium points $\quad\left(\hat{x}_{e q}, \hat{y}_{e q}, \theta_{e q}\right)$

$$
\hat{x}_{e q}=\hat{x} \Longrightarrow \frac{1-\mu}{\left(\hat{X}_{0}+\hat{x}+\mu\right)^{2}} \Lambda_{1}^{\prime \cdot \theta}+\frac{\mu}{\left(\hat{X}_{0}+\hat{x}+\mu-1\right)^{2}} \Lambda_{2}^{\prime \cdot \theta}=\hat{X}_{0}+\hat{x} \quad \text { (degree 7) }
$$

$$
\hat{y}_{e q}=0
$$

$$
\forall m_{1}, m_{2} \Longrightarrow \theta_{e q}=0 \text { ou } \theta_{e q}=\pi
$$

$$
m_{1}=m_{2} \Rightarrow \theta_{e q}=0 \text { ou } \theta_{e q}=\pi \text { sou } \theta_{e q}=\frac{\pi}{2}
$$

Equilibrium Points: Earth-Moon

Behavior for different tether length: Earth-Moon

$$
\begin{aligned}
& \text { initial } \\
& \text { conditions } \\
& x_{0}=0 \\
& x_{0}^{\prime}=0 \\
& y_{0}=0 \\
& y_{0}^{\prime}=0 \\
& \theta_{0}=0, \pi / 2 \\
& \theta_{0}^{\prime}=10^{-3} / d a y \\
& \hline t=8 d a y s \\
& l=500 / 800 / 1000 \mathrm{~km} \\
& m_{1}=m_{2}
\end{aligned}
$$

Periodic solutions in the vicinity of equilibrium points?

- Linear stability

- Characterisc curve the of Lyapunov periodic orbits

$$
\begin{aligned}
& \text { Linear stability - a system with } 6 \text { EDO(s) } \\
& \left\{\begin{array}{l}
\frac{d x}{d t}=\dot{x} \\
\frac{d \dot{x}}{d t}=+2 \dot{y}-\left(\frac{1-\mu}{\hat{R}_{1}^{3}} \Lambda_{1}^{l, \theta}+\frac{\mu}{R_{2}^{3}} \Lambda_{2}^{l, \theta}-1\right)\left(\hat{X}_{0}+x\right)-\mu(1-\mu)\left(\frac{\Lambda_{1}^{l, \theta}}{\hat{R}_{1}^{3}}-\frac{\Lambda_{2}^{l, \theta}}{\hat{R}_{2}^{3}}\right) \\
\frac{d y}{d t}=\dot{y} \\
\frac{d \dot{y}}{d t}=-2 \dot{x}-\left(\frac{1-\mu}{\hat{R}_{1}^{3}} \Lambda_{1}^{l, \theta}+\frac{\mu}{\hat{R}_{2}^{3}} \Lambda_{2}^{l, \theta}-1\right) y \\
\frac{d \theta}{d t}=\dot{\theta} \\
\frac{d \dot{\theta}}{d t}=-2 \underbrace{\left(\frac{\hat{l}^{\prime}}{\hat{l}}\right)\left(\theta^{\prime}+1\right)}_{=0}-\frac{1-\mu}{\hat{R}_{1}^{3}} \Omega_{1}^{l, \theta}-\frac{\mu}{R_{2}^{3}} \Omega_{2}^{l, \theta}
\end{array}\right.
\end{aligned}
$$

linear stability - Jacobian matrix

$$
D_{\vec{x}} \vec{F}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
\frac{\partial F_{1}}{\partial x} & 0 & \frac{\partial F_{1}}{\partial y} & 2 & \frac{\partial F_{1}}{\partial \theta} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
\frac{\partial F_{3}}{\partial x} & -2 & \frac{\partial F_{3}}{\partial y} & 0 & \frac{\partial F_{3}}{\partial \theta} & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\frac{\partial F_{5}}{\partial x} & 0 & \frac{\partial F_{5}}{\partial y} & 0 & \frac{\partial F_{5}}{\partial \theta} & 0
\end{array}\right)
$$

Given the primaries and satellite masses
Jacobian matrix is a function of cable length only.

$$
\begin{aligned}
& \text { Linear stability - a system with } 6 \text { EDO(s) } \\
& \left\{\begin{array}{l}
\frac{d x}{d t}=\dot{x} \\
\frac{d \dot{x}}{d t}=+2 \dot{y}-\left(\frac{1-\mu}{\hat{R}_{1}^{3}} \Lambda_{1}^{l, \theta}+\frac{\mu}{R_{2}^{3}} \Lambda_{2}^{l, \theta}-1\right)\left(\hat{X}_{0}+x\right)-\mu(1-\mu)\left(\frac{\Lambda_{1}^{l, \theta}}{\hat{R}_{1}^{3}}-\frac{\Lambda_{2}^{l, \theta}}{\hat{R}_{2}^{3}}\right) \\
\frac{d y}{d t}=\dot{y} \\
\frac{d \dot{y}}{d t}=-2 \dot{x}-\left(\frac{1-\mu}{\hat{R}_{1}^{3}} \Lambda_{1}^{l, \theta}+\frac{\mu}{\hat{R}_{2}^{3}} \Lambda_{2}^{l, \theta}-1\right) y \\
\frac{d \theta}{d t}=\dot{\theta} \\
\frac{d \dot{\theta}}{d t}=-2 \underbrace{\left(\frac{\hat{l}^{\prime}}{\hat{l}}\right)\left(\theta^{\prime}+1\right)}_{=0}-\frac{1-\mu}{\hat{R}_{1}^{3}} \Omega_{1}^{l, \theta}-\frac{\mu}{R_{2}^{3}} \Omega_{2}^{l, \theta}
\end{array}\right.
\end{aligned}
$$

Earth-Moon:

$$
\theta=0
$$

$P\left(x_{e q}, 0,0,0,0,0\right) \quad l=1000 \mathrm{~km}$
 $m_{1}=m_{2}$

$\vec{P}^{-1}\left(D_{\vec{x}} \vec{F}\right) \vec{P}=\left(\begin{array}{cccccc}2.159 & 0 & 0 & 0 & 0 & 0 \\ 0 & -2.159 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1.862 & 0 & 0 \\ 0 & 0 & -1.862 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3.093 \\ 0 & 0 & 0 & 0 & -3.093 & 0\end{array}\right)$

Earth-Moon $\quad \theta=\frac{\pi}{2}$

$P\left(x_{\text {eq }}, 0,0,0, \frac{\pi}{2}, 0\right) \quad l=1000 \mathrm{~km} \quad m_{1}=m_{2}$

$\vec{P}^{-1}\left(D_{\vec{x}} \vec{F}\right) \vec{P}=\left(\begin{array}{cccccc}2.159 & 0 & 0 & 0 & 0 & 0 \\ 0 & -2.159 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1.862 & 0 & 0 \\ 0 & 0 & -1.862 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3.093 & 0 \\ 0 & 0 & 0 & 0 & 0 & -3.093\end{array}\right)$

Generation of Lyapunov periodic orbits

Numerical applications (Earth-Moon)

Periodic orbits in the vicinity of $P_{0}\left(x_{e q}, 0,0\right)$

$x_{0}=10.0015964019 \cdot 10^{-5}$
$\dot{x}_{0}=0.0000000000 \cdot 10^{-5}$
$y_{0}=0.0000000000 \cdot 10^{-5}$
$\dot{y}_{0}=-38.897974167 \cdot 10^{-5}$
$\theta_{0}=0.0000000000 \cdot 10^{-5}$
$\dot{\theta}_{0}=0.0000000000 \cdot 10^{-5}$
$T=3.3735104335$
error $\approx 10^{-12}$

Some orbits of the Lyapunov family

Comparison of the Characteristic Curves

- Our fourth order model is consistent with the RTBP
- The dynamics shows almost no variation with the masses
- The tether length is the most significative parammeter of the dynamics
- The Lyapunov orbits are not translations of RTBP
- The tether describes a Lyapunov orbit with theta=0
The linear coupling space-angle are tori, so a future work is to continue these tori.

L1 on the Earth side of the Moon is 56,000 km up from the surface, and L2 on the far side is $67,000 \mathrm{~km}$ up. In these positions, the forces of gravity and centrifugal force are equal, and as long as the system remained balanced (L1 and L2 are in unstable equilibrium along the line between Earth and Moon), it would remain stationary.Both of these positions are substantially farther up than the 36,000 km from Earth to geostationary orbit. Furthermore, the weight of the limb of the cable system extending down to the Moon would have to be balanced by the cable extending further up, and the Moon's slow rotation means the upper limb would have to be much longer than for an Earth-based system. To suspend a kilogram of cable or payload just above the surface of the Moon would require $1,000 \mathrm{~kg}$ of counterweight, $26,000 \mathrm{~km}$ beyond L1. (A smaller counterweight on a longer cable, e.g., 100 kg at a distance of $230,000 \mathrm{~km}$ - more than halfway to Earth - would have the same balancing effect.) Without the Earth's gravity to attract it, an L2 cable's lowest kilogram would require $1,000 \mathrm{~kg}$ of counterweight at a distance of $120,000 \mathrm{~km}$ from the Moon. The anchor point of a space elevator is normally considered to be at the equator. However, there are several possible cases to be made for locating a lunar base at one of the Moon's poles; a base on a peak of eternal light could take advantage of continuous solar power, for example, or small quantities of water and other volatiles may be trapped in permanently shaded crater bottoms. A space elevator could be anchored near a lunar pole, though not directly at it. A tramway could be used to bring the cable the rest of the way to the pole, with the Moon's low gravity allowing much taller support towers and wider spans between them than would be possible on Earth.

- The original space elevator, as Clarke acknowledges, was first described by Russian engineer Yuri Artsutanov in 1960, in an article in Pravda called "To the Cosmos By Electric Train." Since then, it's apparently been independently "reinvented" at least three times:
- (1) by a team from Scripps Institute of Oceanography and Woods Hole Oceanographic Institute (1966);
- (2) in 1969 by A.R. Collar and J.W. Flower in the Journal of the British Interplanetary Society;
- (3) and by Jerome Pearson of the Air Force Research Laboratory at Wright-Patterson Air Force Base (1975). It was hinted at, though not fully developed (for lack of a large enough envelope for calculations, he claims) by Clarke himself in 1963 in an essay for UNESCO on communications satellites.
http://www.niac.usra.edu/files/studies/final_report/ 472Edwards.pdf
http://gassend.net/spaceelevator/breaks/

