EXPERIMENTAR E APRENDER: UMA INTRODUÇÃO À DUALIDADE PARTÍCULA-ONDA

Vitorvani Soares

Richard Kohara

Instituto de Física — Universidade Federal do Rio de Janeiro

PMEF — Programa de Mestrado em Ensino de Física — IF-UFRJ

Abril de 2014

Apresentação		

3 CARACTERIZAÇÃO DA LUZ

4 CONCLUSÃO

	Motivação
--	-----------

Centros luminosos produzidos por uma rede de difração de n = 140 linhas/mm, a uma distância do plano imagem igual D = 5 cm.

Motivação		

- Apresentação de conceitos, leis e fórmulas de maneira desarticulada.
 - A lei da interferência

$$m\lambda = d \operatorname{sen} \theta$$

- O objetivo do trabalho é mostrar que podemos estabelecer esta lei a partir somente de um experimento em óptica e sem nenhum conhecimento teórico prévio destas relações.
- Este roteiro de trabalho pode servir como base para as atividades de um laboratório de ensino em óptica física.

Motivação

Ilustração da montagem para o experimento. Em primeiro plano, a câmara, em seguida temos a rede de difração e, ao fundo, o anteparo e a fonte luminosa.

olho humano

Representação esquemática da montagem para o experimento.

	Aparato experimental		
	and the second		
	-		
		the second s	

Centros luminosos para uma rede de mesmo numero de linhas por milímetro mas a diferentes distâncias da fonte luminosa (LED violeta). A da esquerda está a uma distância D = 5 cm e a da direita D = 20 cm.

	Aparato experimental		
# Réseaux		# Personal and	
	A STATE	ALCONOM AND A REAL OF A RE	
		A CONTRACTOR OF	
1111	TARAL TARAL	I STATE	

Centros luminosos para duas redes de numero de linhas por milímetro diferentes à uma mesma distância da fonte luminosa (LED violeta). A da esquerda n = 140 linhas/mm e a da direita n = 530 linhas/mm.

is des traits : la du spectre

seris des traits

riti du spectre

Representação da posição dos centros luminosos do LED violeta para diferentes distâncias da rede ao anteparo, para diferentes redes: n = 140, 530, 600, 1000 linhas/mm.

Representação da posição dos centros luminosos do LED azul para diferentes distâncias da rede ao anteparo, para diferentes redes: n=140, 530, 600, 1000 linhas/mm.

Representação da posição dos centros luminosos do LED verde para diferentes distâncias da rede ao anteparo, para diferentes redes: n = 140, 530, 600, 1000 linhas/mm.

Representação da posição dos centros luminosos do LED amarelo para diferentes distâncias da rede ao anteparo, para diferentes redes: n=140, 530, 600, 1000 linhas/mm.

Representação da posição dos centros luminosos do LED vermelho para diferentes distâncias da rede ao anteparo, para diferentes redes: n = 140, 530, 600, 1000 linhas/mm.

Representação da posição dos centros luminosos do LED infravermelho para diferentes distâncias da rede ao anteparo, para diferentes redes: n = 140, 530, 600, 1000 linhas/mm. Observamos que a rede n=1000 lpm já não revela mais os centros para a nossa câmara.

		Caracterização da luz	

- A posição dos centros luminosos são linearmente proporcionais à distancia da rede a fonte.
- Os coeficientes angulares b destas relações dependem não somente da ordem m do centro considerado (se o primeiro, o segundo, e assim por diante) mas também do numero n de linhas por milímetro da rede empregada.
 - A distribuição dos centros luminosos:

$$y_m = b_{m,n} D$$

Isto nos sugere analisar o comportamento destes coeficientes com o numero n de linhas da rede.

					Caracteri	zação da luz	
	10				m = 3		
/ioleta	0.8					m = 2	
rra o LED v	0.6			Z I			
inte b pa	0.4					m = 1	
coeficie).2			0 0			
	0 0	200	400	600	800	1000	
		núm	ero n de linha	as por mm (m	m ')		

Coeficientes b para o violeta em função do numero n de linhas por milímetro das diferentes redes. Observe o aumento linearmente proporcional dos coeficientes com o aumento do numero n.

Coeficientes b para o azul em função do numero n de linhas por milímetro das diferentes redes. Observe o aumento linearmente proporcional dos coeficientes com o aumento do numero n.

Coeficientes b para o verde em função do numero n de linhas por milímetro das diferentes redes. Observe o aumento linearmente proporcional dos coeficientes com o aumento do numero n.

Apresentação		Motivação			Aparato e					Cai	racterizaç	ção da	luz	Conclusão
		1.0												
	0								K					
	lare	0.8						5						
) an													
	Щ	0.6					Q						ļ	
	a 0													
	par	0.1										_		
	te b	0.4	0				~	Q					m = 1	
	cien		-0-					_						
	oefic	0.2	0											
	ö		0											
		0												
		0		200	4	00		600		800 -1)	10	00	
				nur	nero n	ae linr	ias po	or mn	ו (mm)				

Coeficientes b para o amarelo em função do numero n de linhas por milímetro das diferentes redes. Observe o aumento linearmente proporcional dos coeficientes com o aumento do numero n.

Coeficientes b para o vermelho em função do numero n de linhas por milímetro das diferentes redes. Observe o aumento linearmente proporcional dos coeficientes com o aumento do numero n.

Coeficientes b para o infravermelho em função do numero n de linhas por milímetro das diferentes redes. Observe o aumento linearmente proporcional dos coeficientes com o aumento do numero n.

	Caracterização da luz	

- Os coeficientes angulares b_{m,n} destas relações dependem linearmente do numero n de linhas por milímetro da rede empregada;
- O fator de proporcionalidade depende da ordem do centro luminoso considerado:

 $b_{m,n} = a_{m,n} n$

Isto nos sugere analisar o comportamento do coeficiente a_{m,n}/m e o número n de linhas da rede.

	Motivaç			Apai					(Caracteri:	zação da	a luz	
	1 0 10 ⁻³												
Ê	1.0 10					_	Ŷ	$\hat{+}$	_				
Ē			Υ Υ										
Ds	8.0 10 ⁻⁴												
Щ													
so			J				т						
so	6.0 10 ⁻⁴		-			-	Ą	- 8				<u>_</u>	
tod			<u> </u>				$\overline{\Phi}$	Ŧ					
ara	4 0 10-4		¢.				Ŷ	Ŷ				Ŧ	
bę	4.0 10					_	Y	Ŷ				<u> </u>	
E													
)/q	2.0 10 ⁻⁴					_							
ão													
raz													
	0												
		J	20	. 0	40	0		600		800		1000	
				núm	ero n d	e linh	ias po	or mm	(mm	·)			

Gráfico da razão $a_{m,n}/m$ vs. número *n* de linhas por milímetro da rede. Observe que a razão $a_{m,n}/m$ não depende de *m* ou de *n*.

	Caracterização da luz	

A razão $a_{m,n}/m$ não depende de m ou de n;

• A razão $a_{m,n}/m = \lambda$ é uma característica da cor do LED considerado e tem dimensão de comprimento:

$$a_{m,n} = \lambda m$$

$$y_m \approx b_{m,n} D = a_{m,n} n D = \lambda m n D$$

$$\frac{1}{n}\frac{y_m}{D}\approx m\lambda$$

 $d \tan \theta_m \approx m\lambda$

Conclusão:

- Newton, apesar de não ser taxativo, insinua em seus escritos que a luz poderia ser constituída de partículas diminutas de tal forma que estas partículas compõem os raios luminosos e interagem com o éter e as partes sólidas deste último começariam a vibrar.
- "[...] estas partículas de luz seriam produzidas no interior da fonte luminosa sem nenhum intervalo perceptível de tempo".
- Elas se propagariam no meio etéreo e após algum tempo alcançariam uma velocidade enorme, constante e finita, como demonstravam as observações de Roemer.

Newton, "A hipótese da luz – uma hipótese explicativa das propriedades da luz sobre as quais discorrem meus diversos artigos", in: I. B.
Cohen e R. Westfall (eds.), Newton: textos, antecedentes, comentários. Rio de Janeiro:Contraponto:EdUerj, 2002, págs. 30-34; I.
Newton, Opticks: Or a Treatise of the Reflections, Refractions, Inflections & Colours of Light-Based on the Fourth Edition London, 1730,
New York: Dover, 1952, 1979.

		Conclusão

 Deste modo, podemos acrescentar então que estas partículas alcançariam um anteparo com uma freqüência f dada pelo inverso do tempo de propagação para percorrer a distancia λ:

$$f = \frac{1}{T} = \frac{c}{\lambda}.$$

 $\lambda \approx 1000\,\text{nm}$ $c \approx 10 \times 10^8\,\text{m}\,\text{s}^{-1}$

$$f \approx 1 \times 10^{14} \, \mathrm{Hz}$$

 Com as intensidades usuais, o olho humano não seria capaz de distinguir os choques sucessivos destas partículas de luz contra a tela onde a imagem é formada.

		Conclusão

- As partículas de luz transportariam então momento e energia e o desvio da luz ao atravessar um meio para outro seria consequência da interação dessas partículas com os componentes do meio considerado. As figuras de reflexão, refração e interferência seriam o resultado dos múltiplos desvios das partículas de luz ao atravessar o meio permeado de éter.
- A autoridade de Newton fez prevalecer este modelo até o início do século XVIII. Entretanto, esta não é a única maneira de considerarmos o problema. Como foi revelado por Euler e Fresnel, o modelo ondulatório também permite descrever o feixe luminoso como um tubo percorrido por oscilações transversais na direção do feixe retilíneo. O termo "interferência" teria então na óptica ondulatória o significado de perturbação da superposição da energia dos diferentes feixes luminosos em uma dada localização espacial.

Representação esquemática para a análise do experimento de interferência de ondas. O ponto O representa o ponto luminoso central sobre o anteparo, $F_1 \, e \, F_2$ são as fontes a partir da rede e o ponto P é onde se forma outro centro luminoso sobre o mesmo anteparo a uma distancia y a partir de O. A distância entre as fontes é d e o anteparo está a uma distância D da rede.

		Conclusão

$$a_1 = A \operatorname{sen} \left[2\pi f \left(t - \frac{d_1}{c} \right) \right],$$

$$a_2 = A \operatorname{sen} \left[2\pi f \left(t - \frac{d_2}{c} \right) \right].$$

$$F_1 P = d_1,$$

$$F_2 P = d_2.$$

Superposição:

$$a = a_1 + a_2$$

= Asen $\left[2\pi f\left(t - \frac{d_1}{c}\right)\right] + Asen \left[2\pi f\left(t - \frac{d_2}{c}\right)\right]$
= $2A\cos\left[\frac{2\pi}{\lambda}\frac{(d_2 - d_1)}{2}\right] \times sen\left[2\pi ft - \frac{2\pi}{\lambda}\frac{(d_2 + d_1)}{2}\right]$

		Conclusão

Amplitude:

$$A_0 = 2A \left| \cos \left[\frac{2\pi}{\lambda} \frac{(d_2 - d_1)}{2} \right] \right|$$
$$= 2A \left| \cos \left(\frac{\Delta \varphi}{2} \right) \right|$$

Diferença de fase:

$$\Delta \varphi = 2\pi \frac{(d_2 - d_1)}{\lambda}$$

Intensidade luminosa:

$$I \propto (A_0)^2 = 4A^2 \left| \cos \left(\frac{\Delta \varphi}{2} \right) \right|^2$$

		Conclusão

Quando $\Delta \phi$ for igual a um múltiplo ímpar de π obtemos intensidade nula:

 $\Delta \varphi = (2m+1)\pi$

Quando $\Delta \varphi$ for igual a um múltiplo par de π obtemos intensidade máxima:

$$\Delta \varphi = (2m) \, \pi$$

Portanto, a diferença de fase é definida pela diferença de caminhos luminosos entre os dois raios incidentes sobre o ponto y_m . Deste modo, quando a diferença de caminhos for um múltiplo inteiro do comprimento de onda λ , obtemos

$$d_2 - d_1 = m\lambda$$

e obteremos o máximo de intensidade luminosa no ponto considerado.

		Conclusão

Da geometria do problema, temos que esta diferença depende da distância perpendicular da linha que une as fontes luminosas e o ponto *P*:

$$d_2 - d_1 = \frac{D}{\cos(\theta + \alpha)} - \frac{D}{\cos(\theta - \alpha)}$$
$$= D\left[\frac{2 \sin\theta \sin\alpha}{\cos(\theta + \alpha)\cos(\theta - \alpha)}\right]$$

Para lpha pprox 0 (distância pequena entre as fontes: d << D) temos então que

$$\cos(\theta + \alpha) \approx \frac{D}{\sqrt{D^2 + (y + \frac{d}{2})^2}}$$

		Conclusão

$$\cos(\theta - \alpha) \approx \frac{D}{\sqrt{D^2 + (y - \frac{d}{2})^2}}$$
$$\sin\alpha \approx \frac{d/2}{\sqrt{D^2 + (y + \frac{d}{2})^2}}$$
$$\sin\theta \approx \frac{y}{\sqrt{D^2 + y^2}}$$

Para $\alpha \approx 0 \ e \ \theta \approx 0$ (centros luminosos não muito distantes do máximo central) temos então que y e d são pequenos comparados com a distancia D. Deste modo, os máximos de intensidade serão dados quando

$$d_2 - d_1 = m\lambda = D\left[\frac{2\mathrm{sen}\theta\sin\alpha}{\cos\left(\theta + \alpha\right)\cos\left(\theta - \alpha\right)}\right] \approx d\,\mathrm{sen}\theta_m \approx d\,\frac{D}{y_m}$$

Para $\alpha \approx 0$ e e $\theta >> 0$ (centros luminosos significativamente afastados do centro) ainda teremos d pequeno comparado com a distancia D, mas agora não poderemos ignorar y. Deste modo, os máximos de intensidade serão dados quando

$$d_2 - d_1 = m\lambda = D\left[\frac{2\operatorname{sen}\theta\sin\alpha}{\cos\left(\theta + \alpha\right)\cos\left(\theta - \alpha\right)}\right] \approx d\operatorname{sen}\theta_m \approx d\frac{y_m}{\sqrt{D^2 + y_m^2}}.$$

Podemos dizer que então que a superposição das ondas emitidas a partir das fontes sobre a rede produzem a figura de interferência e a representação ondulatória é uma representação adequada para a luz.

		Conclusão
		i -

Resumindo:

- Apresentação de conceitos, leis e fórmulas de maneira articulada (observação – modelo).
 - A lei da interferência

$$m\lambda = d \operatorname{sen} \theta_m$$

- Podemos estabelecer esta lei a partir somente de um experimento em óptica e sem nenhum conhecimento teórico prévio destas relações.
- Este roteiro de trabalho pode servir como base para as atividades de um laboratório de ensino em óptica física.

Kohara, R.Y..H

Experimentar e aprender: uma introdução à dualidade partícula-onda.

Rio de Janeiro: Projeto de Instrumentação para o Ensino de física — Instituto de física/UFRJ, 2011.