Aula 8: A solução de Schwarzschild I

A C Tort¹

¹Departmento de Física Teórica Instituto Física – Universidade Federal do Rio de Janeiro

28 de Maio de 2010

Os espaços de Riemann

Espaços de Riemann podem ser definidos como aqueles cuja distância ao quadrado entre dois pontos infinitesimalmente próximos é dada por:

$$(d\mathbf{s})^2 = \sum_{i=1}^n \sum_{j=1}^n g_{ij}(dx^i)(dx^j) \equiv g_{ij}(dx^i)(dx^j).$$

As coordenadas x^i são coordenadas curvilíneas arbitrárias.

Tort (IF-UFRJ) Informal 1 / 15

A equação da geodésica: os símbolos de Christoffel

Considere uma superfície plana bidimensional cuja métrica é dada por:

$$(d\ell)^2 = (dr)^2 + r^2 (d\varphi)^2.$$

A distância entre dois pontos A e B se escreve:

$$\ell_{AB} = \int_A^B \left[(dr)^2 + r^2 (d\varphi)^2 \right]^{1/2}.$$

Suponha que uma curva nesse espaço seja parametrizada de tal forma que:

$$r = r(\sigma), \quad \varphi = \varphi(\sigma), \quad \sigma \in [\sigma_A, \sigma_B].$$

Segue que:

$$\ell_{AB} = \int_{A}^{B} d\sigma \left[\left(\frac{dr}{d\sigma} \right)^{2} + r^{2} \left(\frac{d\varphi}{d\sigma} \right)^{2} \right]^{1/2}.$$

Tort (IF-UFRJ) Informal 2/15

O lagrangiano é dado por:

$$L(r,\varphi,\frac{dr}{d\sigma},\frac{d\varphi}{d\sigma},\sigma) = \left[\left(\frac{dr}{d\sigma} \right)^2 + r^2 \left(\frac{d\varphi}{d\sigma} \right)^2 \right]^{1/2},$$

e as equações de Euler-Lagrange são:

$$\frac{\partial L}{\partial r} - \frac{d}{d\sigma} \frac{\partial L}{\partial \left(\frac{dr}{d\sigma}\right)} = 0,$$

е

$$\frac{\partial L}{\partial \varphi} - \frac{d}{d\sigma} \frac{\partial L}{\partial \left(\frac{d\varphi}{d\sigma}\right)} = 0.$$

3/15

Definindo uma nova parametrização por:

$$\ell = \sigma L$$
,

segue que:

$$\frac{d^2r}{d\ell^2}=r\left(\frac{d\varphi}{d\ell}\right)^2,$$

е

$$\frac{d}{d\ell}\left(r^2\frac{d\varphi}{d\ell}\right)=0,$$

ou,

$$\frac{d^2\varphi}{d\ell^2} = -\frac{2}{r}\frac{dr}{d\ell}\frac{d\varphi}{d\ell}.$$

As duas equações acima são as equações da geodésica para o espaço que estamos considerando.

Tort (IF-UFRJ) Informal 4/15

De modo geral, a equação da geodésica é dada por:

$$\frac{d^2x^{\alpha}}{d\tau^2} + \Gamma^{\alpha}_{\beta\gamma}\frac{dx^{\beta}}{d\tau}\frac{dx^{\gamma}}{d\tau} = 0,$$

onde $\Gamma^{\alpha}_{\beta\gamma}$, são os símbolos de Christoffel definidos por:

$$g_{\alpha\delta}\Gamma^{\delta}_{\beta\gamma} = rac{1}{2}\left(rac{\partial g_{lphaeta}}{\partial x^{\gamma}} + rac{\partial g_{lpha\gamma}}{\partial x^{eta}} - rac{\partial g_{eta\gamma}}{\partial x^{lpha}}
ight).$$

Os símbolos de Christoffel têm a propriedade:

$$\Gamma^{\alpha}_{\beta\gamma} = \Gamma^{\alpha}_{\gamma\beta}$$
.

No nosso exemplo:

$$\Gamma^{r}_{\varphi\varphi}=-r, \Gamma^{\varphi}_{r\varphi}=\Gamma^{\varphi}_{\varphi r}=rac{2}{r}.$$

Tort (IF-UFRJ) Informal 5 / 15

Simetria esférica em geral

Métrica esfericamente simétrica geral:

$$(c d\tau)^2 = g_{00}(ct,r)(d(ct))^2 - g_{11}(ct,r)(dr)^2 - r^2((d\theta)^2 + \sin^2\theta(d\varphi)^2);$$

Substituindo nas equações de campo de Einstein, determina-se as funções $g_{00}(ct, r)$ e $g_{11}(ct, r)$.

Mas antes devemos especificar as condições de contorno!!!

Tort (IF-UFRJ) Informal 6 / 15

A métrica de Scharzschild

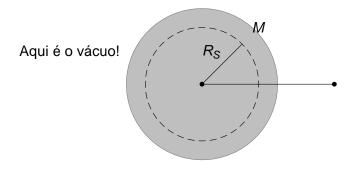


Figura: Massa esférica.

Para o vácuo em torno de um corpo esférico de massa M:

$$g_{00}\left(ct,r\right)\rightarrow g_{00}\left(r\right)=\left(1-\frac{2GM}{c^{2}r}\right)$$

$$g_{11}(ct,r) \to g_{11}(r) = \left(1 - \frac{2GM}{c^2r}\right)^{-1}$$

Métrica de Schwarzschild:

$$(c d\tau)^2 = \left(1 - \frac{2GM}{c^2 r}\right) (d(ct))^2 - \frac{(dr)^2}{\left(1 - \frac{2GM}{c^2 r}\right)} - r^2 \left((d\theta)^2 + \sin^2\theta (d\varphi)^2\right);$$

Tort (IF-UFRJ) Informal 8/15

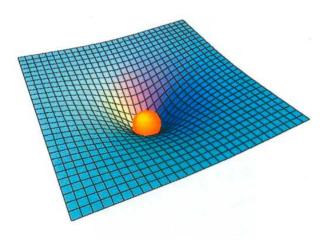


Figura: Espaçotempo de Schwarzschild.

Distâncias radiais

Fazendo $dt = d\theta = d\varphi = 0$,

$$d\ell = \frac{dr}{\left(1 - \frac{2GM}{c^2r}\right)^{1/2}}.$$

Note que r é a coordenada radial definida pela medida da circunferência/área medida da esfera:

$$r = \frac{C}{2\pi}$$

ou

$$r^2:=\frac{A}{4\pi}.$$

A distância $d\ell$ é a distância entre duas cascas esféricas concêntricas.

Intervalos de tempo próprio

$$d\tau = \left(1 - \frac{2GM}{c^2 r}\right)^{1/2} dt$$

No limite $r \to \infty$:

$$d\tau \rightarrow dt$$
.

Observe que quando:

$$r^*=\frac{2GM}{c^2},$$

o tempo congela!!! (Para o obsevador no infinito $dt \to \infty$, pois $d\tau$, o intervalo de tempo próprio, é finito!)

Tort (IF-UFRJ) Informal 11 / 15

Red shift gravitacional

Definindo:

$$z=\frac{\lambda_{\infty}-\lambda}{\lambda};$$

temos:

$$1 + z = \left(1 - \frac{2GM}{c^2r}\right)^{-1/2}.$$

12 / 15

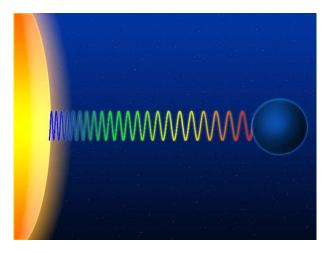


Figura: Deslocamento gravitacional para o vermelho.

O raio de Schwarzschild

Por definição:

$$r^* \equiv R_S = \frac{2GM}{c^2},$$

é o raio de Schwarzschild.

14 / 15

Fim da aula 8