Part I: Cosmology Basics

[Ryden chap. 2 to 4]

Miguel Quartin
Instituto de Física, UFRJ
Astrofísica, Relativ. e Cosmologia (ARCOS)
Chapter 2
Fundamental Observations

- Olber's Paradox
- Homogeneity and isotropy
- Hubble's (Lemaître's) Law
- Cosmologist Particle Book
- The CMB
Olber's Paradox

Why is the night sky dark?

- Infinite and static universe → bright sky!
- Solution 1: universe has finite size
- Solution 2: universe has a finite age
Olber's Paradox (2)

- Parenthesis: Luminosity vs. Brightness vs. Intensity vs. Flux
 - **Luminosity** \((L)\) = total energy / time; emitted or received
 - It is a *property* of the source; does **not** depend on distance
 - **Intensity** \((I)\) = **Brightness** = energy / (time x det. area x solid ang.)
 - It is a *property* of the source; does **not** depend on distance
 - Specific Intensity \((I_\nu)\) = \(I / \text{(unit frequency)}\)
 - **Flux** \((f)\) = Luminosity / (4\(\pi\) distance\(^2\))
 - depends on distance

\[
I = \int_0^\infty I_\nu d\nu
\]

\[
f(r) = \frac{L}{4\pi r^2}
\]
Olber's Paradox (3)

- Let's compute the sky brightness
 - Let n be the average # density of stars
 - Let L be their average luminosity ($= \text{energy/time}$)

$$\text{flux} : f(r) = \frac{L}{4\pi r^2}$$

The intensity differential dJ is:

$$dJ(r) = \frac{L}{4\pi r^2} \cdot n \cdot r^2 dr = \frac{nL}{4\pi} dr$$

$$J = \int_{r=0}^{\infty} dJ = \frac{nL}{4\pi} \int_{0}^{\infty} dr = \infty$$

Where did we go wrong?
Olber's Paradox (4)

- Stars have finite (angular) size → they obstruct stars behind them
 - J no longer ∞; instead $J \leftrightarrow$ average surface brightness of a star

- L and/or n may depend on distance
 - We would need $L n \propto r^x$, $x < -1$

- Universe could have finite size and/or age
 - Cutoff in the integral

- Flux might not go down as $1/r^2$
 - Due to non-euclidean geometry
 - Due to redshift / expansion
Homogeneity & Isotropy

- The universe is* homogeneous and isotropic on large scales
 - Minimum scale ~ 100 Mpc
 - * – our observations are consistent with this hypotheses
- Isotropy & homogeneity independent
 - Isotropy around every point → homogeneity

- Copernican Principle:
 - we don't live in a special location in the universe

- Cosmological Principle:
 - on sufficiently large scales, the properties of the Universe are the same for all observers
Homogeneity & Isotropy (2)

- Isotropy & homogeneity independent
 - Isotropy around every point → homogeneity

Anisotropic & Homogeneous

Anisotropic & Inhomogeneous
Homogeneity & Isotropy (3)
The Hubble's Law

- The Doppler allows us to measure radial velocities with high precision;

\[z \equiv \frac{\lambda_{\text{obs}} - \lambda_{\text{em}}}{\lambda_{\text{em}}} = \sqrt{\frac{1 + \frac{v}{c}}{1 - \frac{v}{c}}} - 1 = \frac{v}{c} + \mathcal{O}\left(\frac{v}{c}\right)^2 \]
The Hubble's Law (2)

- Lemaître (and later Hubble)* found out that galaxies are, in average, receding from us;
 - The redshift (z) is linear with distance
 - The velocity is approx. also linear with distance
 - * Stigler's law of eponymy: "No scientific discovery is named after its original discoverer."

\[
v = H_0 r \quad (z \ll 1)
\]

\[
z = \frac{H_0}{c} r + O \left(\frac{v}{c} \right)^2
\]
$h = 0.72 \pm 0.03 \pm 0.07$ Freedman et al. (Hubble Key Project)

$z \approx 0.1$

10^9 light-years

2×10^9 light-years

Hubble's data

Riess et al astro-ph/9410054
Quasar Spectra (different z’s)

- B2 1128+31 $z=0.178$
- PKS 1217+02 $z=0.240$
- 4C 73.18 $z=0.302$
- B2 1208+32A $z=0.389$

Wavelength (angstroms)
The Hubble's Law (3)

- Hubble's Law does not violate the copernican principle!
 - Isotropic and homogeneous expansion produces Hubble's law for all observers

\[
H_0 = (69 \pm 2) \frac{\text{km}}{\text{s Mpc}}
\]
The Hubble's Law (4)

- We can describe such an expansion by a time-dependent scale factor $a(t)$
 - Inhomogeneity $\rightarrow a(t, r)$
 - Anisotropy (shear) $\rightarrow a(t, \theta, \varphi)$ or $\{a(t), b(t), c(t)\}$
The Hubble's Law (5)

- If galaxies are receding from us, were we once together?
 - Simplest first assumption: $H(t) = \text{const} = H_0$
 - This implies ALL galaxies were together at the SAME time

\[
t_0 = \frac{r}{v} = \frac{r}{H_0 r} = H_0^{-1}
\]

\[H_0^{-1} = (14.2 \pm 0.4) \text{ Gyr}\]

- This is the base of the Big-Bang model
- The above calculation ignores gravity
 - Gravity pulls galaxies in ans slows expansion with time

\[H(t) > H_0 \text{ in the past } \Rightarrow t_0 < 14.2 \text{ Gyr}\]
4 types of particle are important in cosmology:

- Photons, “baryons” (protons+neutrons+electrons), neutrinos, and dark matter
 - e^- mass \ll proton mass
 - Neutrinos are almost always “free-streaming”

<table>
<thead>
<tr>
<th>particle</th>
<th>symbol</th>
<th>rest energy (MeV)</th>
<th>charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>proton</td>
<td>p</td>
<td>938.3</td>
<td>+1</td>
</tr>
<tr>
<td>neutron</td>
<td>n</td>
<td>939.6</td>
<td>0</td>
</tr>
<tr>
<td>electron</td>
<td>e^-</td>
<td>0.511</td>
<td>-1</td>
</tr>
<tr>
<td>neutrino</td>
<td>ν_e, ν_μ, ν_τ</td>
<td>?</td>
<td>0</td>
</tr>
<tr>
<td>photon</td>
<td>γ</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>dark matter</td>
<td>?</td>
<td>?</td>
<td>0</td>
</tr>
</tbody>
</table>
In thermal equilibrium the energy density of photons is given by the blackbody spectrum.

\[
\varepsilon(f) df = \frac{8\pi h}{c^3} \frac{f^3 df}{\exp(hf/kT) - 1}
\]

The total energy and number density are:

\[
\varepsilon = \alpha T^4 \quad n = \beta T^3
\]

\[
\alpha = \frac{\pi^2 k^4}{15 \hbar^3 c^3} \quad \beta = \frac{2.404 k^3}{\pi^2 \hbar^3 c^3}
\]
The Cosmic Microwave Background

- Review of the CMB
 - almost isotropic (up to 1 part in 10^5) radiation field
 - blackbody spectrum (the best one we have ever seen), with
 $$T_0 = 2.7255 \pm 0.0006 \text{ K}$$
 - microwave radiation ($\sim 50 - 400$ GHz)
 - redshift $z \sim 1100$

\[n_\gamma = 4.11 \times 10^8 \text{ m}^{-3} \]
\[\varepsilon_{\gamma,0} = \alpha T_0^4 = 0.261 \text{ MeV m}^{-3} \]
\[E_{\text{mean}} = 6.34 \times 10^{-4} \text{ eV} \]
Wavelength [mm]

Intensity [MJy/sr]

FIRAS data with 400σ errorbars

2.725 K Blackbody
The isotropic CMB (2)
Thermodynamic Considerations

- Blackbody CMB → thermal equilibrium
 - We can use equilibrium thermodynamics
 - Consider a co-moving (expanding like the universe) volume $V \propto a(t)^3$.

\[
dQ = dE + PdV = 0 \quad [\text{adiabatic equilibrium}]
\]

\[
\frac{dE}{dt} = -P(t)\frac{dV}{dt}
\]

\[
E = \varepsilon_\gamma V = \alpha T^4 V
\]

\[
P = \frac{\varepsilon_\gamma}{3} = \frac{\alpha T^4}{3}
\]

Exerc!
Thermodynamic Considerations (2)

\[
\alpha \left(4T^3 \frac{dT}{dt} V + T^4 \frac{dV}{dt} \right) = -\frac{1}{3} \alpha T^4 \frac{dV}{dt}
\]

\[
\frac{1}{T} \frac{dT}{dt} = -\frac{1}{3V} \frac{dV}{dt} = -\frac{d}{dt} \ln V^{1/3}
\]

\[
\frac{d}{dt} \ln T = -\frac{d}{dt} \ln a
\]

\[
T(t) \propto a(t)^{-1}
\]
The isotropic CMB (3)

- Big-bang model in one line: universe starts very hot & dense; it expands; expansion makes it cool & empty.
- The CMB has a redshift $z \sim 1100$
 - $1 + z = a(t_0) / a(t_{em})$
 - $z \sim 1100 \rightarrow \text{universe} \sim 1100 \text{smaller} @ \text{CMB epoch}$
 - $T(t) \propto a(t)^{-1} \rightarrow T \sim 1100 \text{higher} @ \text{CMB epoch}$
 - $T(\text{CMB}) @ \text{emission} \sim 3000 \text{K} \sim 0.26 \text{eV}$
 - $3000 \text{K} \rightarrow \text{near-infrared} \ [T(\text{Sun}) \sim 5800 \text{K}]$
- Simple explanation by the Big-Bang model
 - $0.26 \text{eV} \leftrightarrow \text{Ionization energy hydrogen} (13.6 \text{eV})$
 - Discovery in the 60's: decisive evidence for that model
Exercise!

- If the mean energy $<E>$ of the photons is 0.26 eV, what fraction f of photons have energy > 13.6 eV?
 - What must be the mean energy for (i) $f = 0.1$? (ii) $f = 0.001$? (iii) $f = 10^{-(\text{number of letters in your name+lastname})}$?
 - Make a plot of f vs. $<E>$ for a range of $<E>$ encompassing both energies above.
Chapter 3

Newton vs. Einstein

- Equivalence Principle
 - Non-inertial forces

- Curvature in non-euclidean geometries

- The Friedmann-Lemaître-Robertson-Walker (FLRW) metric

- Proper distance
The Equivalence Principle

- Classical physics allows in principle 3 “kinds” of mass
 - Inertial mass \(m_i \)
 \[F = m_i a \]
 - Active gravitational mass \(m_{g,a} \)
 \[\Phi = -\frac{GM_{g,a}}{r} \]
 - Passive gravitational mass \(m_{g,p} \)
 \[F = -\frac{GM_{g,a} m_{g,p}}{r^2} \hat{r}_{mM} \]
- Experiments tell us that the 3 kinds coincide to high precision
The Equivalence Principle (2)

- The weak equivalence principle (WEP) states that $m_i = m_{g,a} = m_{g,p}$.

- Torsion balance experiments provide the most accurate test of the weak equivalence principle.
 - Sensitive to changes in the direction of forces
 - Can test the WEP to 1 part in 10^{13}
The Equivalence Principle (3)

- Define the Eötvös parameter (see arXiv:1207.2442 - CQG):

\[\eta_{1,2} = \frac{a_1 - a_2}{(a_1 + a_2)/2} = \frac{(m_g/m_i)_1 - (m_g/m_i)_2}{[(m_g/m_i)_1 + (m_g/m_i)_2]/2} \]

<table>
<thead>
<tr>
<th></th>
<th>Be-Ti</th>
<th>Be-Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta a_N)</td>
<td>(10^{-15} , \text{m s}^{-2})</td>
<td>0.6 ± 3.1</td>
</tr>
<tr>
<td>(\Delta a_W)</td>
<td>(10^{-15} , \text{m s}^{-2})</td>
<td>−2.5 ± 3.5</td>
</tr>
<tr>
<td>(\Delta a_\odot)</td>
<td>(10^{-15} , \text{m s}^{-2})</td>
<td>−1.8 ± 2.8</td>
</tr>
<tr>
<td>(\Delta a_g)</td>
<td>(10^{-15} , \text{m s}^{-2})</td>
<td>−2.1 ± 3.1</td>
</tr>
<tr>
<td>(\eta_\oplus)</td>
<td>(10^{-13})</td>
<td>0.3 ± 1.8</td>
</tr>
<tr>
<td>(\eta_\odot)</td>
<td>(10^{-13})</td>
<td>−3.1 ± 4.7</td>
</tr>
<tr>
<td>(\eta_{DM})</td>
<td>(10^{-5})</td>
<td>−4.2 ± 6.2</td>
</tr>
</tbody>
</table>
Define an Yukawa-like correction, with 2 parameters (see arXiv:0712.0607 - PRL):

\[V(r) = \alpha G \left(\frac{q}{\mu} \right)_1 \left(\frac{q}{\mu} \right)_2 \frac{m_1 m_2}{r_{12}} e^{-r_{12}/\lambda} \]

\[\lambda = \hbar \left/ (m_b c) \right. \]
So, if the WEP holds exactly, is there a more profound reason?

Gravity force is proportional to the test particle mass

\[|\mathbf{F}| = -\frac{GM_{g,a}m_{g,p}}{r^2} = -\frac{GMm}{r^2} \propto m \]

What other force(s) has this property?
- Inertial forces!
- Remember classical mechanics, rotating reference frame

\[\mathbf{F}_{\text{eff}} \equiv m\mathbf{a}_r \]

\[= \mathbf{F} - m\ddot{\mathbf{r}} - m\dot{\mathbf{\omega}} \times \mathbf{r} - m\mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r}) - 2m\mathbf{\omega} \times \mathbf{v}_r \]
The Equivalence Principle (5)

- Einstein's idea: maybe gravity is also an inertial force.
 - Generalization of inertial frame → “free-falling”, non-rotating frame
 - No gravity is felt in such a frame
- Strong Equivalence Principle (SEP): The outcome of any local non-gravitational experiment in a freely falling laboratory is independent of the velocity of the laboratory and its location in spacetime.
 - Locally: accelerated frame equivalent to non-accelerated frame with gravity
\[\uparrow a \]

\[\downarrow g = a \]
The Equivalence Principle (8)

- Gravity must also affect light / photons;
 - Optics: Fermat's Principle → light travels in a path that minimizes travel time
 - With gravity this path is not a straight line
 - Geometry cannot be Euclidean!
 - Space (spacetime) must be **curved**
 - General relativity: free-particles follow **geodesics**
 - 4-D generalization of shortest distance between two points

\[
F - m \sum_{j=1}^{d} \sum_{i=1}^{d} \nu_{j} \Gamma_{ij}^{k} \dot{q}_{i} e_{k} = m \ddot{a},
\]

\[
\frac{d^{2}x^{\alpha}}{d\phi^{2}} + \Gamma^{\alpha}_{\mu\beta} \frac{dx^{\mu}}{d\phi} \frac{dx^{\beta}}{d\phi} = 0
\]
Curvatura

Geometria -> desenvolvida por egípcios, babilônios e chineses.
Gregos deram um tratamento axiomático e definitivo com Euclides (300BC).

Axiomas -> proposições verdadeiras mais simples possível.
Se queremos convencer alguém de que uma afirmação A é correta, devemos mostrar que A segue de B, que esse alguém aceita como verdadeira.
Caso ele não aceite B como verdadeira mostrar que B segue de C e assim por diante, até chegar a uma afirmação que é obviamente verdadeira.

Em sua obra “Os Elementos” Euclides usa 5 postulados ou axiomas e deduz,
junto com certas definições, um total de 465 teoremas.
Um dos postulados de Euclides é o das paralelas.
“Através de um ponto passa uma e somente uma paralela a uma dada linha reta.”
Paralelas -> se em 1 plano 2 linhas não se interceptam então elas são ditas paralelas.
Esse axioma não pode ser simplificado e diferencia o espaço euclidiano de outros espaços.

Geometria euclidiana -> característica: soma dos ângulos internos de 1 triângulo é igual a
$\alpha + \beta + \gamma = 180^\circ$. $C = 2 \pi R$.
Existem inúmeros tipos de espaços. O espaço euclidiano é um dos mais simples.
Ele é dito uniforme. Uniforme = homogêneo e isotrópico. Há invariancia por rotações e translações.
Espaços uniformes -> $C = \gamma \pi e \alpha + \beta + \gamma = j \pi$. Existem + 2 tipos de espaços uniformes.
• Gauss, Lobachevski e Bolyai (geometria hiperbólica)
• Riemann (geometria esférica)
Diferença principal -> existe uma escala de comprimento R característica desse espaço.
Se d<< R o espaço euclidiano é reobtido.
\[C = 2\pi r < 2\pi l \]

\[C = 2\pi r > 2\pi l \]
Embora saibamos intuitivamente o que é uma superfície curva, é mais difícil aceitarmos a ideia de curvatura em 3 ou mais dimensões. Isso ocorre pois, p.e., não podemos visualizar um espaço 4-dimensional no qual um 3-espaço apareceria curvo. É possível darmos um significado a curvatura sem referência ao espaço de imersão.

Curvatura intrínseca.
Propriedades intrínsecas → são aquelas que dependem apenas de medidas na superfície. Intrinsecamente uma folha plana é equivalente a 1 cilindro ou um cone. (veja a figura)

Como seres bi-dimensionais descobririam a curvatura de seu mundo? Uma forma é medir comprimento de círculos e áreas.
The Bertrand–Diquet–Puiseux theorem states that for a curve in the plane, the Gaussian curvature K at a point P can be calculated as:

$$K = \frac{3}{\pi} \lim_{r \to 0} \frac{2\pi r}{r^3} \left(-C \right) = \frac{12}{\pi} \lim_{r \to 0} \frac{\pi r^2 - A}{r^4}$$

Where C is a constant and A is the area enclosed by the curve at distance r from P. The diagram illustrates the derivation of the formula using polar coordinates:

$$r = a \alpha ; \quad \alpha = \frac{r}{a}$$

$$\theta = \eta \alpha \quad \alpha \quad \theta \quad \text{em radianos}$$

$$\eta = a \theta \operatorname{Sen} \frac{r}{a}$$

$$\operatorname{Sen} x = x - \frac{x^3}{3!} + \ldots$$

$$\eta = \theta \cdot a \left(\frac{r}{a} - \frac{r^3}{6a^3} + \ldots \right) = \theta \left(r - \frac{K}{6} r^3 + \ldots \right)$$

$$C = 2\pi \left(r - \frac{K}{6} r^3 + \ldots \right)$$

$$A = 2\pi \int \left(r - \frac{K}{6} r^3 + \ldots \right) \, dr = \pi \left(r^2 - \frac{Kr^4}{12} + \ldots \right)$$
Line Elements

- The line element ds tells one how to calculate the distance (interval) between 2 neighboring points.

\[ds^2 = dx^2 + dy^2 \]
\[ds^2 = dr^2 + r^2 d\phi^2 \]
These infinitesimal relations can be integrated to yield finite lengths.

- Ex: let's compute the circumference of a circle of radius R

$$C = \int dS = \int \left[(dx)^2 + (dy)^2 \right]^{1/2}$$

$$= 2 \int_{-R}^{+R} dx \left[1 + \left(\frac{dy}{dx} \right)^2 \right]^{1/2}_{x^2 + y^2 = R^2}$$

$$= 2 \int_{-R}^{+R} dx \sqrt{\frac{R^2}{R^2 - x^2}}.$$
\[ds^2 = dx^2 + dy^2 + dz^2 \]
\[ds^2 = dr^2 + r^2 [d\theta^2 + \sin^2 \theta \, d\phi^2] \]
“Circle” → equidistant points of a given center
 - e.g. lines of constant “latitude”
 - On a sphere (constant positive curvature):

\[C = \int_0^{2\pi} R \sin \Theta \, d\phi = 2\pi R \sin \Theta \]

\[r = \int_{\text{center}}^{\text{circle}} \int_0^\Theta Rd\theta = R\Theta \quad C = 2\pi R \sin \left(\frac{r}{R} \right) \]

\[ds^2 = dr^2 + R^2 \sin^2 \left(\frac{r}{R} \right) d\theta^2 \]

- On a hyperboloid (constant negative curvature):

\[ds^2 = dr^2 + R^2 \sinh^2 \left(\frac{r}{R} \right) d\theta^2 \]
Line Elements (5)

- In 3D we get
 \[d\Omega^2 \equiv d\theta^2 + \sin^2\theta \, d\phi^2 \]

 \[ds^2 = dr^2 + R^2 \sin^2(r/R) d\Omega^2 \]

 \[ds^2 = dr^2 + r^2 d\Omega^2 \]

 \[ds^2 = dr^2 + R^2 \sinh^2(r/R) d\Omega^2 \]

- These can be unified as:
 \[ds^2 = dr^2 + S_\kappa(r)^2 d\Omega^2 \]

 \[S_\kappa(r) = \begin{cases}
 R \sin(r/R) & (\kappa = +1) \\
 r & (\kappa = 0) \\
 R \sinh(r/R) & (\kappa = -1)
\end{cases} \]

- Or, using \(x = S_\kappa(r) \):
 \[ds^2 = \frac{dx^2}{1 - \kappa x^2/R^2} + x^2 d\Omega^2 \]
The Friedmann-Lemaître-Robertson-Walker (FLRW) metric

- Special relativity tells us how to compute separations in 4-D space-times
 - The separation \(ds^2 = dx^2 + dy^2 + dz^2 \) depends on observer (spatial contraction)!
 - We want to work with invariant (observer-independent) quantities.
 - \(c = \text{const} \rightarrow -c^2 dt^2 + dx^2 + dy^2 + dz^2 = \text{const} \)
 - Special relativity \(\leftrightarrow \) the Minkowski metric
 - Line element: \(ds^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2 \)
 - non-euclidean
 - photons: \(ds^2 = 0 \) geodesics (null-geodesics);
 - matter: \(ds^2 < 0 \) geodesics (timelike-geodesics);
The FLRW metric (2)

- We can generalize Minkowski to allow for spatial expansion and/or contraction
 - Assuming isotropy & homogeneity, the most general metric is the FLRW one, with line element:
 \[
 ds^2 = -c^2 dt^2 + a(t)^2 \left[\frac{dx^2}{1 - \kappa x^2/R_0^2} + x^2 d\Omega^2 \right]
 \]
 \[
 ds^2 = -c^2 dt^2 + a(t)^2 \left[dr^2 + S_\kappa(r)^2 d\Omega^2 \right]
 \]
- The metric itself is a (rank 2) tensor $g_{\mu\nu}$ with components $g_{\mu\nu}$
 \[
 ds^2 \equiv \sum_{\mu=1}^{4} \sum_{\nu=1}^{4} g_{\mu\nu} dx^\mu dx^\nu
 \]
Proper Distance

- For simplicity, let's consider instantaneous radial separations: \(ds = a(t) \, dr \)
 - The proper distance between two co-moving objects (one at the origin) is:
 \[
 d_p(t) = a(t) \int_0^r dr' = a(t)r
 \]
 - The proper velocity is defined as:
 \[
 v_p(t) \equiv \dot{d}_p(t) = \dot{a}(t)r = \frac{\ddot{a}(t)}{a(t)}d_p(t) \equiv H(t)d_p(t)
 \]
 \[
 v_p(t_0) = H(t_0)d_p(t_0) \equiv H_0d_p(t_0) \quad H(t) \equiv \frac{\ddot{a}(t)}{a(t)}
 \]
Proper Distance (2)

- The proper velocity can be larger than c for faraway galaxies!
 - The critical distance is called the Hubble distance d_H

$$v_p(t_0) = c \quad \Rightarrow \quad d_p(t_0) = \frac{c}{H_0} \equiv d_H(t_0)$$

$$d_H(t_0) = (4380 \pm 130) \text{ Mpc}$$

- The proper distance is **unobservable** (not in the past lightcone)
 - we can only observe it indirectly (assuming a model)

- However, the scale factor at emission $a(t_{em})$ is observable
Proper Distance (3)

- Let's see what happens to a photon over large distances
 - Without loss of generality, let's consider radial null-geodesics separations: $ds = 0 \rightarrow a(t) \, dr = \pm c \, dt$
 - Define: emission time (t_e) and reception time (t_0)

\[
\int_{t_e}^{t_0} \frac{dt}{a(t)} = \int_0^r dr = r
\]

\[
\int_{t_e + \lambda_e/c}^{t_0} \frac{dt}{a(t)} = \int_{t_e + \lambda_e/c}^{t_0 + \lambda_0/c} \frac{dt}{a(t)}
\]

If we subtract this:

\[
\int_{t_e + \lambda_e/c}^{t_0} \frac{dt}{a(t)}
\]

We get this:

\[
\int_{t_e}^{t_0 + \lambda_0/c} \frac{dt}{a(t)} = \int_{t_0}^{t_0 + \lambda_0/c} \frac{dt}{a(t)}
\]
Proper Distance (4)

The integrand is effectively constant \((\lambda/c \sim 10^{-14} \text{ s} \sim 10^{-32} \text{ } H_0^{-1})\)

\[
\int_{t_e}^{t_e+\lambda_e/c} \frac{dt}{a(t)} = \int_{t_0}^{t_0+\lambda_0/c} \frac{dt}{a(t)}
\]

\[
\frac{1}{a(t_e)} \int_{t_e}^{t_e+\lambda_e/c} dt = \frac{1}{a(t_0)} \int_{t_0}^{t_0+\lambda_0/c} dt
\]

\[
\frac{\lambda_e}{a(t_e)} = \frac{\lambda_0}{a(t_0)}
\]

\[
z \equiv \frac{\lambda_{\text{obs}} - \lambda_{\text{em}}}{\lambda_{\text{em}}}
\]

\[
1 + z = \frac{a(t_0)}{a(t_e)} = \frac{1}{a(t_e)}
\]
Chapter 4
Cosmic Dynamics

- Einstein's equations
 - The Friedmann equation
- Fluid equations
- Equations of state
- The cosmological constant
Measuring the curvature

- In a homogenous & isotropic universe, all information is contained in: \(a(t) \), \(\kappa \) and \(R_0 \) (if \(\kappa \neq 0 \)).
 - \(\kappa = +1 \) → spherical (Riemann) geometry
 - \(\kappa = 0 \) → flat geometry
 - \(\kappa = -1 \) → hyperbolical (Lobachevski) geometry
- The radius of curvature \(R_0 \) must be comparable with the Hubble radius \(d_H \)
 - Otherwise we would see multiple images of galaxies
Einstein's Equations

- The fundamental equations of general relativity are Einstein's equations (10 second order partial diff. eqs.)
 - Tensors are algebraic constructs in vector spaces, independent of coordinate systems (observers)
 - The **metric** is a function of the energy-momentum tensor \(T \)

\[
G_{\mu\nu} = \frac{8\pi G}{c^2} T_{\mu\nu} \quad (\mu, \nu = \{0, 1, 2, 3\})
\]

\[
G_{\mu\nu} \left(g, \partial g, \partial \partial g \right) = G_{\nu\mu} \quad \text{(symmetric)}
\]

\[
\sum_{\mu} \nabla^\mu G_{\mu\nu} = 0 = \sum_{\mu} \nabla^\mu T_{\mu\nu} \quad \text{(energy-momentum conservation)}
\]
Einstein's Equations (2)

- It is often convenient to work on abstract-index notation
 - Tensors are represented by their coordinates in an undefined coordinate system
 - Sometimes implicitly assumed to be cartesian
 - Can be written in either covariant (lower indices) or contravariant (upper indices) form

\[
G = \frac{8\pi G}{c^2} \, T \quad \rightarrow \quad G_{\mu\nu} = \frac{8\pi G}{c^2} \, T_{\mu\nu}
\]

- In a homogeneous and isotropic universe (FLRW metric), only 2 of the above equations are non-zero & independent

\[
G_{00} = \frac{8\pi G}{c^2} \, T_{00} \quad G_{11} = G_{22} = G_{33} = \frac{8\pi G}{c^2} \, T_{11}
\]
Einstein's Equations (3)

- In GR, we can **raise** and **lower** indexes by internal product with the metric g

\[\sum_{\alpha} g^{\alpha \mu} g_{\alpha \nu} \equiv \delta^\mu_\nu \quad G^{\mu \nu} \equiv \sum_{\alpha} g^{\alpha \mu} G_{\alpha \nu} = \frac{8 \pi G}{c^2} T^{\mu \nu} \]

- In cosmology it is more **convenient** to work with mixed raised/lowered indices (one up, one down)

- In FLRW spacetimes, matter must behave like a perfect fluid

\[T^{\mu \nu} = (\varepsilon + P) u^\mu u_\nu + P \delta^\mu_\nu \]

- In comoving cartesian coordinates we get:

\[u^\mu = (-1, 0, 0, 0) \quad g_{\mu \nu} = \text{diag}(-1, a^2, a^2, a^2) \]

\[u_\mu = (1, 0, 0, 0) \quad T^{\mu \nu} = \text{diag}(-\varepsilon, P, P, P) \]
Friedmann Equation

- For a Newtonian derivation, see [Ryden]
- From Einstein's 00 (time-time) equation we have the so-called Friedmann equation

\[G^0_0 = \frac{8\pi G}{c^2} T^0_0 \]

\[-3 \left[\left(\frac{\dot{a}}{a} \right)^2 + \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2} \right] = -\frac{8\pi G}{c^2} \varepsilon(t) \]

\[H(t)^2 = \frac{8\pi G}{3c^2} \varepsilon(t) - \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2} \]
Friedmann Equation (2)

\[H(t)^2 = \frac{8\pi G}{3c^2} \varepsilon(t) - \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2} \]

- Since energy is positive, for \(\kappa = -1 \), there is a minimum radius of curvature for the universe

\[R_0(\text{min}) = \frac{c}{H_0} = d_H(t_0) \]

- For spatially flat universes, there is a critical density related to the Hubble parameter

\[\varepsilon_{\text{crit}}(t) = \frac{3c^2}{8\pi G} H(t)^2 \quad \varepsilon_{\text{crit},0} = (4870 \pm 290) \text{ MeV m}^{-3} \]
Friedmann Equation (3)

- The universe has a **very low** average density
 - The critical density is roughly:
 - 1 hydrogen / 200 liters
 - 140 solar masses / kpc3

\[
\rho_{\text{crit},0} \equiv \frac{\varepsilon_{\text{crit},0}}{c^2} = (8.7 \pm 0.5) \times 10^{-27} \text{ kg m}^{-3}
\]

\[
= (1.28 \pm 0.08) \times 10^{11} \text{ M}_\odot \text{ Mpc}^{-3}
\]
Friedmann Equation (4)

- In the Einstein Equation, the energy-momentum tensor T is the total energy-momentum tensor, the sum of different T's for all species (photons, baryons, neutrinos, dark matter, etc.)

$$H(t)^2 = \frac{8\pi G}{3c^2} \sum_i \varepsilon_i(t) - \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2}$$

- It is convenient to define normalized density parameters

$$\Omega_i(t) \equiv \frac{\varepsilon_i(t)}{\varepsilon_{\text{crit}}(t)} \quad \Omega_{\text{tot}}(t) \equiv \Omega(t) \equiv \sum \Omega_i(t)$$

$$\varepsilon_{\text{tot}}(t) \equiv \varepsilon(t) \equiv \sum \varepsilon_i(t)$$
The Friedmann equation is thus rewritten as

$$\sum_i \Omega_i(t) = 1 + \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2 H(t)^2}$$

We can also treat curvature as an effective fluid, with associated energy density and pressure

$$\Omega_\kappa(t) = -\frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2 H(t)^2} \sum_i \Omega_i(t) = 1 - \Omega_\kappa(t)$$

In particular, at present we have

$$\sum_i \Omega_{i0} = 1 - \Omega_{\kappa 0} = 1 + \frac{\kappa c^2}{R_0^2 H_0^2}$$
Fluid Equations

- From Einstein's ij (space-space) equations we have the so-called \textit{acceleration equation}.

- For a Newtonian derivation, again see [Ryden]

\[G^i_j = \left(\frac{8\pi G}{c^2} \right) T^i_j \]

\[- \left(H^2 + 2 \frac{\ddot{a}}{a} - \frac{\kappa c^2}{R_0^2 a^2} \right) \delta^i_j = \frac{8\pi G}{c^2} P \delta^i_j = \frac{8\pi G}{3c^2} 3P \delta^i_j \]

Friedmann Eq. \rightarrow

\[H^2 - \frac{\kappa c^2}{R_0^2} \frac{1}{a^2} = \frac{8\pi G}{3c^2} \varepsilon \]

\[\frac{\ddot{a}}{a} = - \frac{4\pi G}{3c^2} \left[\varepsilon + 3P \right] \quad \text{“acceleration equation”} \]
We have derived 2 fundamental equations so far:

\[H(t)^2 = \frac{8\pi G}{3c^2} \varepsilon(t) - \frac{\kappa c^2}{R_0^2} \frac{1}{a(t)^2} \]

“Friedmann equation”

\[\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2} \left[\varepsilon + 3P \right] \]

“acceleration equation”

We can combine them to derive the conservation equation (or simply fluid equation)

\[\dot{\varepsilon} + 3\frac{\dot{a}}{a} \left[\varepsilon + P \right] = 0 \]

Problem: we have 2 independent eqs. and 3 variables

- We need another equation!
Equations of State

- Normal fluids typically have a well-defined equation of state (EoS), which relates its pressure with other thermodynamic quantities, like its energy E or entropy S

$$P = P(\varepsilon, S)$$

- The equation of state can be non-linear and very complicated in general (like in condensed matter or in stars)
- In cosmology, we deal with dilute gases, with very simple EoS

$$P_i = w_i \varepsilon_i \quad (w_i \rightarrow \text{constant})$$

- We will allow for $w(t)$ in the future, but we will neglect any dependence of P in entropy throughout this course
Equations of State (2)

- In cosmology → typically very simple EoS
 \[P_i = w_i \varepsilon_i \quad (w_i \rightarrow \text{constant}) \]

- Low density gas → ideal gas
 - Consider an ideal & non-relativistic gas (& particle-mass \(\mu \))
 \[P = \frac{N}{V} k_B T = \frac{\rho}{\mu} k_B T \]
 \[\varepsilon \approx \rho c^2 \]

- Maxwell's velocity distribution → \[3k_B T = \mu \langle v^2 \rangle \]
 \[P_{\text{nonrel}} = \frac{\langle v^2 \rangle}{3c^2} \varepsilon \ll \varepsilon \quad [w_{\text{nonrel}} \approx 0] \]
Equations of State (3)

- Fully relativistic matter has instead:
 \[P_{\text{rel}} = \frac{1}{3} \varepsilon_{\text{rel}} \]
 \[w_{\text{rel}} = \frac{1}{3} \]

- Mildly relativistic matter is in-between \(0 < w < 1/3\)

- Curvature has effectively: \(w_\kappa = -1/3\)

- As we will see, a Cosmological Constant \(\Lambda\) is described by
 \[P_\Lambda = -\varepsilon_\Lambda \]
 \[w_\Lambda = -1 \]
Equations of State (4)

- A perturbation in the fluid generates sound waves
 - For adiabatic perturbations, the speed of sound is
 \[c_s^2 = c^2 \left(\frac{dP}{d\varepsilon} \right) \rightarrow c_s = \sqrt{\omega c} \]

- Causality \(\rightarrow w \leq 1 \)
- \(w < 0 \rightarrow \) exponential perturbations

- In general, dark energy refers to any fluid with \(w < -\frac{1}{3} \)
 - Observations \(\rightarrow w_{\text{DE}} \approx -1.0 \pm 0.1 \)
The Cosmological Constant Λ

- Historically, Λ was introduced by Einstein in 1917 to produce a static universe
 - By 1917 it was still unclear whether there existed other galaxies beyond the Milky Way
 - What was the distance to the observed nebulae?
 - By mid-1920's, Ernst Öpik and Edwin Hubble determined that Andromeda was far outside our galaxy

- Einstein modified his equations by adding a constant term

$$G^\mu_\nu - \Lambda \delta^\mu_\nu = \frac{8\pi G}{c^2} T^\mu_\nu$$
The Cosmological Constant \(\Lambda \) (2)

- The modified fluid equations are:

\[
H^2 = \frac{8\pi G}{3c^2} \varepsilon - \frac{\kappa c^2}{R_0} \frac{1}{a^2} + \frac{\Lambda}{3}
\]

\[
\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2} \left[\varepsilon + 3P \right] + \frac{\Lambda}{3}
\]

\[
\dot{\varepsilon} + 3\frac{\dot{a}}{a} \left[\varepsilon + P \right] = 0
\]

- The \(\Lambda \) terms can be absorbed into \(\varepsilon \) & \(P \) by identifying

\[
\varepsilon_\Lambda \equiv \frac{c^2}{8\pi G} \Lambda \quad P_\Lambda \equiv -\varepsilon_\Lambda = -\frac{c^2}{8\pi G} \Lambda
\]
The Cosmological Constant Λ (3)

- A static universe requires $\dot{a} = \ddot{a} = 0$
- Einstein assumed (correctly) that in the present universe matter ($P = 0$) was dominant over radiation or curvature
 - Energy in starlight << rest-energy of stars
 \[
 \frac{\ddot{a}}{a} = 0 = -\frac{4\pi G}{3c^2} [\varepsilon + 0] + \frac{\Lambda}{3} \quad \rightarrow \quad \Lambda = 4\pi G \rho
 \]
 \[
 H^2 = 0 = \frac{8\pi G}{3c^2} \varepsilon - \frac{\kappa c^2}{R_0^2} \frac{1}{a^2} + \frac{\Lambda}{3} \quad \rightarrow \quad R_0 = \frac{c}{\Lambda^{1/2}}
 \]
 - Einstein's static universe had to be closed (Riemannian)!
The Cosmological Constant Λ (4)

- By late 1920's, the universe was observed to be expanding.
- Einstein's static universe had a bigger flaw → instability!
 - In the newtonian limit we have a modified Poisson eq.:
 \[\nabla^2 \Phi + \Lambda = 4\pi G \rho \n\]
 - Repulsive force from Λ balances attractive gravity from ϱ.
 - Small perturbations from $\Lambda = 4\pi G \rho$ lead to expansion or collapse.
 - Einstein: "the greatest blunder of my career".
- Although a static universe is discarded, Λ had a good side effect: it could make the Universe older.
The Cosmological Constant Λ (5)

- Although a static universe is discarded, Λ had a good side effect: it could make the Universe older.
 - Lemaître & Hubble measured $H_0 \sim 500 \frac{\text{km}}{\text{s Mpc}}$.
 - The simple estimate for the age of the universe becomes too small (smaller than the age of the Earth): $H_0^{-1} \sim 2 \text{ Gyr}$.

- A positive Λ can make the universe accelerate at late times, and thus $H(t)$ was smaller in the past (recall slide #16).

\[
\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^2} \left[\varepsilon + 3P \right] + \frac{\Lambda}{3} > 0
\]
The Cosmological Constant Λ (6)

- Late 1990's: Λ reappears due to late accelerated expansion
- What could be behind Λ? Are there good physical candidates with $w = -1$?
 - **Answer:** YES! → vacuum (rest point) energy!
 - Vacuum energy should **not** depend on the expansion of the universe → constant ε
- Let's compute it from quantum field theory
 \[
 \langle \varepsilon_{\text{vac}} \rangle = \int_{0}^{\Lambda \gg m} \frac{dk}{(2\pi)^3} \frac{4\pi k^2}{2} \frac{1}{\sqrt{k^2 + m^2}} \sim \frac{\Lambda^4}{16\pi^2}
 \]
- A conservative cutoff at the LHC scale → $\langle \varepsilon_{\text{vac}} \rangle \sim 10^{56} \varepsilon_{\Lambda}$
 - See e.g. S. Weinberg's book *Cosmology*, p. 56
- Note that this is a very naïve calculation: see [1205.3365](https://arxiv.org/abs/1205.3365)
- End of Part I -